Home
Class 12
MATHS
The value of a and b such that the funct...

The value of a and b such that the function
`f(x)={(-2sinx"," , -pi le x le -(pi)/(2)),(a sinx+b",", -(pi)/(2) lt x lt (pi)/(2)),(cosx",", (pi)/(2) le x le pi ):}` is continuous in `[-pi,pi]` are

A

`-1, 0`

B

1, 0

C

1, 1

D

`-1, 1`

Text Solution

Verified by Experts

The correct Answer is:
D

For continuity in `[-pi, pi]`, we must have
At `x=-(pi)/(2),`
`f(-(pi)/(2))=lim_(x to (-(pi)/(2))^(-1))(-2 sinx)=lim_(x to (-(pi)/(2))^(+))(a sin x+b)`
`rArr 2= -a+b " " `…(i)
At `x=(pi)/(2),f((pi)/(2))=lim_(x to ((pi)/(2))^(-)) (a sinx+b) =lim_(x to ((pi)/(2))^(+))(cosx)`
`rArr 0=a+b " " ` ...(ii)
On solving Eqs. (i) and (ii), we get
a = -1 and b = 1
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CONTINUITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2 (MISCELLANEOUS PROBLEMS)|60 Videos
  • CIRCLE AND CONICS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise All Questions|74 Videos
  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|22 Videos

Similar Questions

Explore conceptually related problems

Let f(x) = {{:(-2 sin x,"for",-pi le x le - (pi)/(2)),(a sin x + b,"for",-(pi)/(2) lt x lt (pi)/(2)),(cos x,"for",(pi)/(2) le x le pi):} . If f is continuous on [-pi, pi) , then find the values of a and b.

Find the values of a and b so that the function f(x)={{:(x+asqrt2 sin x", "0 le x le pi//4),(2x cot x + b", "pi//4 le x le pi//2),(a cot 2x - b sin x", "pi//2 lt x le pi):} is continuous for 0 le x le pi .

Knowledge Check

  • The value of a and b such that the function f(x) {:{(-2 sin x", "-pile x le -pi/2 ),(a sin x+b " ," -pi/2 lt x lt pi/2 ),(cos x", " pi/2 le x le pi ):} is continuous in [ - pi , pi ] are

    A
    `-1,0`
    B
    `1,0`
    C
    `1,1`
    D
    `-1,1`
  • Let f(x) {(-2sinx,- pi le x le - pi/2),(a sin x+b ,-pi/2 le x le pi/2),(cosx,pi/2 le x le pi):}

    A
    a=1,b=1
    B
    a=-1,b=-1
    C
    a=-1 ,b=1
    D
    a=1 , b=-1
  • Let f(x) {(-2sinx,- pi le x le - pi/2),(a sin x+b ,-pi/2 le x le pi/2),(cosx,pi/2 le x le pi):}

    A
    a=1,b=1
    B
    a=-1,b=-1
    C
    a=-1 ,b=1
    D
    a=1 , b=-1
  • Similar Questions

    Explore conceptually related problems

    Find alpha and beta, so the function f (x) defined by f(x) =-2 sin x, "for" -pi le x le-pi/2 =alpha sinx+beta"for" -pi/2lt x lt pi/2 =cosx , "for" pi/2 le x le pi, is continuous on [-pi, pi].

    Let f(x) = {(-2sin x, ",","if" x le -(pi)/2),(A sin x + B, ",", "if"-(pi)/2 lt x lt (pi)/2 ),(cos x, ",", "if" x ge (pi)/2 ):} Then

    If the function f(x)={(x+a^(2)sqrt(2)sinx",", 0 le x lt (pi)/(4)),(x cot x+b",",(pi)/(4) le x lt (pi)/(2)),(b sin 2x-a cos 2x",", (pi)/(2) le x le pi):} is continuous in the interval [0,pi] then the values of (a, b) are

    If f(x)={(x+a sqrt(2) sinx"," ,0 lt x lt (pi)/(4)),(2x cotx+b",",(pi)/(4) le x le (pi)/(2)),(a cos 2x-b sinx",", (pi)/(2) lt x le pi):} is continuous at x=(pi)/(4) , then a - b is equal to

    The values of a and b so that the function f(x) = {{:(x + a sqrt(2) sin x",",0 le x lt pi//4),(2 x cot x + b",",pi//4 le x le pi//2),(a cos 2 x - b sin x",",pi//2 lt x le pi):} is continuous for x in [0, pi] , are