Home
Class 12
MATHS
the value of lim(x->0)(cos(sinx)-cosx)/x...

the value of `lim_(x->0)(cos(sinx)-cosx)/x^4` is equal to:

A

`1//5`

B

`1//6`

C

`1//4`

D

`1//2`

Text Solution

Verified by Experts

The correct Answer is:
B

`lim_(x to 0)(cos(sinx)-cos x)/(x^(4))`
`=lim_(x to 0) (2 sin((x+sinx)/(2)) sin((x-sinx)/(2)))/(x^(4))`
`=2 lim_(x to 0) [(sin((x+sin x)/(2)))/(((x+ sin x)/(2)))xx(sin((x-sin x)/(2)))/(((x-sin x)/(2))) xx ((x+sin x)/(2x))((x-sinx)/(2x^(3)))]`
`= 2 lim_(x to 0) [(sin((x+sinx)/(2)))/((x+sinx)/(2))xx(sin((x-sinx)/(2)))/((x-sinx)/(2)) xx ((1)/(2)+(sinx)/(2x))((x-sinx)/(2x^(3)))]`
`=2 xx 1xx1xx((1)/(2) +(1)/(2))lim_(x to 0) (x-sinx)/(2x^(3))`
`=lim_(x to 0) (x-sinx)/(x^(3))=lim_(x to 0)(x-(x-(x^(3))/(3!)+(x^(5))/(5!)- ...))/(x^(3))`
`=lim_(x to 0) ((1)/(3!)-(x^(2))/(5!)+...)=(1)/(6)`
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2 (MISCELLANEOUS PROBLEMS)|60 Videos
  • CIRCLE AND CONICS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise All Questions|74 Videos
  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|22 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xrarr0)(cos(tanx)-cosx)/(4x^(4)) is equal to

the value of lim_(x rarr0)(cos(sin x)-cos x)/(x^(4)) is equal to:

lim_(x rarr0)(cos(tan x)-cos x)/(x^(4)) is equal to :

The value of lim_(xrarr 0) (1-cos(1-cos x))/(x^4) is equal to

The value of lim_(xrarr0)(cos x+sinx)^((1)/(x)) is equal to to (take e = 2.71)

The value of lim _(xto0) (cos (sin x )- cos x)/(x ^(4)) is equal to :

lim_(xrarr0)(x^(2)cosx)/(1-cosx) is equal to

lim_(xrarr0) (e^(x^(2))-cosx)/(x^2) is equal to