Home
Class 12
MATHS
lim(x to 0){(1+tanx)/(1+sinx)}^("cosec x...

`lim_(x to 0){(1+tanx)/(1+sinx)}^("cosec x")` is equal to

A

`1//e`

B

1

C

e

D

`e^(2)`

Text Solution

Verified by Experts

The correct Answer is:
B

`lim_(x to 0){(1+tan x)/(1+sin x)}`
`=lim_(x to 0)[([(1+(sinx)/(cosx))^((cosx)/(sinx))]^(1//cos x))/((1+sin x)^((1)/(sinx)))]=e^(lim_(x to 0)(1)/(cos x))/(e )=(e )/(e )=1`
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2 (MISCELLANEOUS PROBLEMS)|60 Videos
  • CIRCLE AND CONICS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise All Questions|74 Videos
  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|22 Videos

Similar Questions

Explore conceptually related problems

lim_(xto0) ((1+tanx)/(1+sinx))^(cosecx) is equal to

lim_(x to 0)(tanx)/x is :

lim_(x to 0)(tanx)/x is :

lim_(x rarr0){(1+tan x)/(1+sin x)}^(csc x)

lim_(x rarr0)((1+tan x)/(1+sin x))^(csc x) is equal to e (b) (1)/(e)(c)1 (d) none of these

underset( x rarr 0 ) ( "lim")((1+sin x )/( 1- sin x ))^("cosec x ") is equal to :

The value of lim_(xrarr0)((1+tanx)/(1+sinx))^((2)/(sinx)) is equal to

lim_(x to 0) (x^3 sin(1/x))/sinx

The value of lim_(xrarr0) ((1+tanx)/(1+sin x))^(cosec x) , is