Home
Class 12
MATHS
lim(x to 0)[(1+3x)^(1//x)]=k, then k is...

`lim_(x to 0)[(1+3x)^(1//x)]=k`, then k is

A

3

B

`-3`

C

`e^(3)`

D

`e^(-3)`

Text Solution

Verified by Experts

The correct Answer is:
C

Given, `lim_(x to 0)(1+3x)^(1//x)=k`
Now, `lim_(x to 0)(1+3x)^(1//x)=e^(3)`
`therefore k =e^(3)`
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2 (MISCELLANEOUS PROBLEMS)|60 Videos
  • CIRCLE AND CONICS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise All Questions|74 Videos
  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|22 Videos

Similar Questions

Explore conceptually related problems

lim_( x to 0)[(1+3x)^(1//x)]=k , then for continuity at x=0, k is

Statement -1 : lim_( x to 0) (sin x)/x exists ,. Statement -2 : |x| is differentiable at x=0 Statement -3 : If lim_(x to 0) (tan kx)/(sin 5x) = 3 , then k = 15

lim_(x rarr0)[(1+3x)/(1-5x)]^(1/x)

lim_(x rarr0)((1+x)^((1)/(k))-1)/(x),(k is positive integer )

Given f(x) {:(= (sin [(2k-3)x])/(4x)", if " x lt0), (= k+1", if " x = 0 ),(= (tan[(3k-4)x])/(2x)", if "x gt 0):} If lim_(x to 0 ) f(x) exists , then k =

Evaluate, lim_(x to 1) (x^(4)-1)/(x-1)=lim_(x to k) (x^(3)-k^(3))/(x^(2)-k^(2)) , then find the value of k.

Match the following : {:("Column I ", " Column II" ), ("(A)" if lim_(x to 1) (1-x) tan""(pix)/2 = k " then " sin (1/k) " is" , "(p)"4),( "(B)" if lim_(x to 5) (x^(k)-5^(k))/(x-5) = 500 " then k is " , "(q)" 1),("(C)" lim_(x to oo)(1 + 4/(x+1))^((3x-1)/3) " is equal to " e^(k) " , then k is" , "(r) A perfect sqare"), ("(D) " d^(20)/(dx^(20)) (2 cos x"," cos 3x)= 2^(4k) [ cos2x + 2^(20) . cos4k]" then k is " , "(s)" 5),(, "(t)An odd number"):}

lim_(x rarr oo)(1+(K)/(x))^(x)=

lim_(x to oo) (1+k/x)^(mx) is equal to