Home
Class 12
MATHS
If X follows the binomial distribution w...

If X follows the binomial distribution with parameters n=6 and p and 9p(X=4)=P(X=2), then p is

A

`(1)/(4)`

B

`(1)/(3)`

C

`(1)/(2)`

D

`(2)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( p \) given that \( X \) follows a binomial distribution with parameters \( n = 6 \) and \( p \), and the condition \( 9P(X = 4) = P(X = 2) \). ### Step-by-Step Solution: 1. **Understand the Binomial Probability Formula**: The probability mass function for a binomial distribution is given by: \[ P(X = k) = \binom{n}{k} p^k (1-p)^{n-k} \] where \( \binom{n}{k} \) is the binomial coefficient. 2. **Calculate \( P(X = 4) \)**: For \( n = 6 \) and \( k = 4 \): \[ P(X = 4) = \binom{6}{4} p^4 (1-p)^{2} \] The binomial coefficient \( \binom{6}{4} = \frac{6!}{4!(6-4)!} = \frac{6 \times 5}{2 \times 1} = 15 \). Therefore: \[ P(X = 4) = 15 p^4 (1-p)^2 \] 3. **Calculate \( P(X = 2) \)**: For \( n = 6 \) and \( k = 2 \): \[ P(X = 2) = \binom{6}{2} p^2 (1-p)^{4} \] The binomial coefficient \( \binom{6}{2} = \frac{6!}{2!(6-2)!} = \frac{6 \times 5}{2 \times 1} = 15 \). Therefore: \[ P(X = 2) = 15 p^2 (1-p)^4 \] 4. **Set Up the Equation**: According to the problem, we have: \[ 9P(X = 4) = P(X = 2) \] Substituting the expressions we found: \[ 9 \times (15 p^4 (1-p)^2) = 15 p^2 (1-p)^4 \] 5. **Simplify the Equation**: Cancel \( 15 \) from both sides: \[ 9 p^4 (1-p)^2 = p^2 (1-p)^4 \] Divide both sides by \( p^2 \) (assuming \( p \neq 0 \)): \[ 9 p^2 (1-p)^2 = (1-p)^4 \] 6. **Rearranging the Equation**: Divide both sides by \( (1-p)^2 \) (assuming \( 1-p \neq 0 \)): \[ 9 p^2 = (1-p)^2 \] 7. **Expand and Rearrange**: Expanding the right side: \[ 9 p^2 = 1 - 2p + p^2 \] Rearranging gives: \[ 9 p^2 - p^2 + 2p - 1 = 0 \implies 8p^2 + 2p - 1 = 0 \] 8. **Using the Quadratic Formula**: The quadratic formula is given by: \[ p = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 8 \), \( b = 2 \), and \( c = -1 \): \[ p = \frac{-2 \pm \sqrt{2^2 - 4 \cdot 8 \cdot (-1)}}{2 \cdot 8} \] \[ = \frac{-2 \pm \sqrt{4 + 32}}{16} = \frac{-2 \pm \sqrt{36}}{16} = \frac{-2 \pm 6}{16} \] 9. **Calculating the Roots**: This gives us two potential solutions: \[ p = \frac{4}{16} = \frac{1}{4} \quad \text{and} \quad p = \frac{-8}{16} = -\frac{1}{2} \] Since \( p \) must be between 0 and 1, we take: \[ p = \frac{1}{4} \] ### Final Answer: The value of \( p \) is \( \frac{1}{4} \).

To solve the problem, we need to find the value of \( p \) given that \( X \) follows a binomial distribution with parameters \( n = 6 \) and \( p \), and the condition \( 9P(X = 4) = P(X = 2) \). ### Step-by-Step Solution: 1. **Understand the Binomial Probability Formula**: The probability mass function for a binomial distribution is given by: \[ P(X = k) = \binom{n}{k} p^k (1-p)^{n-k} ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL DISTRIBUTION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise Exercise 2 (MISCELLANEOUS PROBLEM) (Mean and Variance|32 Videos
  • APPLICATIONS OF DERIVATIVES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET CORNER|21 Videos
  • CIRCLE AND CONICS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise All Questions|74 Videos

Similar Questions

Explore conceptually related problems

If X follows a binomial distribution with parameters n=6 and p. If 4(P(X=4))=P(X=2) , then P=

If X follows Binomial distribution with parameters n=5, p and P(X=2)=9P(X=3), then p is equal to ……. .

If X follows binomial distribution with parameters n=5, p a n d P(X=2)=9 P(X=3), then find the value of p .

Suppose a random variable X follows the binomial distribution with parameters n and p, where 0

If Xollows a binomial distribution with parameters n=100 and p=(1)/(3), then P(X=r) is maximum when

If X follows a binomial distribution with parameters n=8 and p=1//2 , then p(|X-4|le2) equals

If X has a binomial distribution, B(n, p) with parameters n and p such that P(X = 2) = P(X = 3), then E(X), the mean of variable X, is

If X follow a binomial distribution with mean 4 and variance 2 find P(X ge 5)

If X follows binomial distribution with mean 4 and variance 2, find P(|X-4|<=2).