Home
Class 12
MATHS
let |a|=2sqrt(2),|b|=3 and the angle bet...

let `|a|=2sqrt(2),|b|=3` and the angle between a and b is `(pi)/(4)`. If a parallelogram is constructed with adjacent sides `2a-3b and a+b`, then its longer diagonal is of length

A

10

B

8

C

`2sqrt(26)`

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To find the length of the longer diagonal of the parallelogram constructed with adjacent sides \( \mathbf{R_1} = 2\mathbf{a} - 3\mathbf{b} \) and \( \mathbf{R_2} = \mathbf{a} + \mathbf{b} \), we will follow these steps: ### Step 1: Calculate the Magnitude of \( \mathbf{R_1} \) The magnitude of \( \mathbf{R_1} \) can be calculated using the formula: \[ |\mathbf{R_1}| = |2\mathbf{a} - 3\mathbf{b}| \] Using the formula for the magnitude of a vector: \[ |\mathbf{X} - \mathbf{Y}| = \sqrt{|\mathbf{X}|^2 + |\mathbf{Y}|^2 - 2(\mathbf{X} \cdot \mathbf{Y})} \] we can write: \[ |\mathbf{R_1}| = \sqrt{|2\mathbf{a}|^2 + |-3\mathbf{b}|^2 - 2(2\mathbf{a} \cdot (-3\mathbf{b}))} \] Calculating each term: - \( |2\mathbf{a}| = 2|\mathbf{a}| = 2 \times 2\sqrt{2} = 4\sqrt{2} \) - \( |-3\mathbf{b}| = 3|\mathbf{b}| = 3 \times 3 = 9 \) Now substituting these values: \[ |\mathbf{R_1}| = \sqrt{(4\sqrt{2})^2 + 9^2 + 12(\mathbf{a} \cdot \mathbf{b})} \] Next, we need to calculate \( \mathbf{a} \cdot \mathbf{b} \): \[ \mathbf{a} \cdot \mathbf{b} = |\mathbf{a}||\mathbf{b}|\cos\theta = (2\sqrt{2})(3)\cos\left(\frac{\pi}{4}\right) = 6\sqrt{2} \cdot \frac{1}{\sqrt{2}} = 6 \] Now substituting \( \mathbf{a} \cdot \mathbf{b} \): \[ |\mathbf{R_1}| = \sqrt{32 + 81 + 12 \times 6} = \sqrt{32 + 81 + 72} = \sqrt{185} \] ### Step 2: Calculate the Magnitude of \( \mathbf{R_2} \) Now we calculate the magnitude of \( \mathbf{R_2} \): \[ |\mathbf{R_2}| = |\mathbf{a} + \mathbf{b}| \] Using the formula for the magnitude of a vector: \[ |\mathbf{R_2}| = \sqrt{|\mathbf{a}|^2 + |\mathbf{b}|^2 + 2(\mathbf{a} \cdot \mathbf{b})} \] Substituting the known values: \[ |\mathbf{R_2}| = \sqrt{(2\sqrt{2})^2 + 3^2 + 2 \times 6} = \sqrt{8 + 9 + 12} = \sqrt{29} \] ### Step 3: Calculate the Dot Product \( \mathbf{R_1} \cdot \mathbf{R_2} \) Next, we calculate the dot product: \[ \mathbf{R_1} \cdot \mathbf{R_2} = (2\mathbf{a} - 3\mathbf{b}) \cdot (\mathbf{a} + \mathbf{b}) \] Expanding this: \[ = 2\mathbf{a} \cdot \mathbf{a} + 2\mathbf{a} \cdot \mathbf{b} - 3\mathbf{b} \cdot \mathbf{a} - 3\mathbf{b} \cdot \mathbf{b} \] Substituting the values: \[ = 2|\mathbf{a}|^2 + 2(\mathbf{a} \cdot \mathbf{b}) - 3(\mathbf{a} \cdot \mathbf{b}) - 3|\mathbf{b}|^2 \] \[ = 2(8) + 2(6) - 3(6) - 3(9) = 16 + 12 - 18 - 27 = -17 \] ### Step 4: Calculate the Length of the Longer Diagonal The lengths of the diagonals of the parallelogram can be calculated using the formula: \[ |\mathbf{D_1}| = |\mathbf{R_1} + \mathbf{R_2}| \] \[ |\mathbf{D_2}| = |\mathbf{R_2} - \mathbf{R_1}| \] For the longer diagonal, we will calculate \( |\mathbf{D_2}| \): \[ |\mathbf{D_2}| = \sqrt{|\mathbf{R_2}|^2 + |\mathbf{R_1}|^2 - 2(\mathbf{R_1} \cdot \mathbf{R_2})} \] Substituting the values: \[ = \sqrt{29 + 185 + 34} = \sqrt{248} = \sqrt{4 \times 62} = 2\sqrt{62} \] ### Final Answer The length of the longer diagonal is: \[ \boxed{2\sqrt{62}} \]
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST 1

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MCQS|50 Videos
  • MOCK TEST 3

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MCQS|50 Videos

Similar Questions

Explore conceptually related problems

Let vec a and vec b two vectors are such that |vec a|=2sqrt(2) and |vec b|=3 and contain angle 45^(@) . A parallelogram is constructed with vec a-3vec b and 5vec a+2vec b as adjacent sides. Then the length of the larger diagonal is

If ABCD is a parallelogram with two adjacent angles angle A = angle B then the parallelogram is a

Let |a|=7, |b|=11, |a+b|=10 sqrt3 What is the angle between (a+b) and (a-b) ?

If |veca.vecb|=sqrt(3)|vecaxxvecb| then the angle between veca and vecb is (A) pi/6 (B) pi/4 (C) pi/3 (D) pi/2

What will be the angle between vec A and vec B , if the area of the parallelogram drawn with vec A and vec B as its adjacent sides is 1/2 AB ?

Let veca,vecb,vecc be three vectors such that |veca|=|vecb|=|vecc|=4 and angle between veca and vecb is pi/3 angle between vecb and vecc is pi/3 and angle between vecc and veca is pi/3 . The heighat of the parallelopiped whose adjacent edges are represented by the ectors veca,vecb and vecc is (A) 4sqrt(2/3) (B) 3sqrt(2/3) (C) 4sqrt(3/2) (D) 3sqrt(3/2)

Let an angle between a and b be 2pi//3 . If abs(b)=2abs(a) and the vectors a + xb and a - b are at right angles, then the value of x is:

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-MOCK TEST 2-MCQS
  1. Given a matrix A=[a b c b c a c a b],w h e r ea ,b ,c are real positiv...

    Text Solution

    |

  2. The value of cos^-1 (cos12) - sin^-1 (sin 12) is

    Text Solution

    |

  3. Let alpha=(pi)/(5) and A=[(cosalpha,sinalpha),(-sinalpha,-cosalpha)], ...

    Text Solution

    |

  4. If in a triangle ABC, a^2+b^2+c^2=ca+ab sqrt3 then the triangle is

    Text Solution

    |

  5. The difference of the tangents of the angles which the lines x^(2)(sec...

    Text Solution

    |

  6. If |a|=|b|=|c|=1anda*b=b*c=c.a=costheta,then the maximum value of thet...

    Text Solution

    |

  7. If alpha,beta,gamma be the angles which a line makes with the coordina...

    Text Solution

    |

  8. let |a|=2sqrt(2),|b|=3 and the angle between a and b is (pi)/(4). If a...

    Text Solution

    |

  9. If y=sqrt(sinx+sqrt(sinx+sqrt(sinx+ . . .oo))), then (dy)/(dx) is equa...

    Text Solution

    |

  10. If y=sqrt(((1+cos2theta)/(1-cos2theta))),(dy)/(d theta) at theta=(3pi)...

    Text Solution

    |

  11. int(1)/(x^(2)(x^(4)+1)^(3//4))dx is equal to

    Text Solution

    |

  12. The solution of the differential equation (y^(2)dx-2xydy)=x^(3)y^(3)dy...

    Text Solution

    |

  13. x^(2)=xy is a relation which is

    Text Solution

    |

  14. A random variable X takes values 1,2,3 and 4 with probabilities (1)/(6...

    Text Solution

    |

  15. If the probability mass function of a discrete random variable X is P(...

    Text Solution

    |

  16. The order and degree of the differential equation [1+((dy)/(dx))^(2)]^...

    Text Solution

    |

  17. Using integration, find the area bounded by the curves y = |x-1| and ...

    Text Solution

    |

  18. The pair of lines joining origin to the points of intersection of, the...

    Text Solution

    |

  19. If P(A cup B)=3//4 " and " P(overline(A))=2//3, " then " P(overline(A)...

    Text Solution

    |

  20. A conic section is defined by the equations x=-1+sec t, y=3+3 tan t. t...

    Text Solution

    |