Home
Class 12
MATHS
If y=sqrt(((1+cos2theta)/(1-cos2theta)))...

If `y=sqrt(((1+cos2theta)/(1-cos2theta))),(dy)/(d theta)` at `theta=(3pi)/(4)` is

A

`-2`

B

`2`

C

`+-2`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the derivative \( \frac{dy}{d\theta} \) of the function \( y = \sqrt{\frac{1 + \cos 2\theta}{1 - \cos 2\theta}} \) at \( \theta = \frac{3\pi}{4} \). ### Step-by-Step Solution: 1. **Rewrite the Function**: We start with the function: \[ y = \sqrt{\frac{1 + \cos 2\theta}{1 - \cos 2\theta}} \] 2. **Use Trigonometric Identities**: We can simplify \( 1 + \cos 2\theta \) and \( 1 - \cos 2\theta \) using the double angle identities: \[ 1 + \cos 2\theta = 2\cos^2 \theta \quad \text{and} \quad 1 - \cos 2\theta = 2\sin^2 \theta \] Therefore, we can rewrite \( y \): \[ y = \sqrt{\frac{2\cos^2 \theta}{2\sin^2 \theta}} = \sqrt{\frac{\cos^2 \theta}{\sin^2 \theta}} = \frac{|\cos \theta|}{|\sin \theta|} = |\cot \theta| \] 3. **Determine the Sign of \( \cot \theta \)**: The value of \( y \) depends on the quadrant in which \( \theta \) lies: - In the first and third quadrants, \( \cot \theta \) is positive, so \( y = \cot \theta \). - In the second and fourth quadrants, \( \cot \theta \) is negative, so \( y = -\cot \theta \). 4. **Differentiate \( y \)**: We differentiate \( y \) with respect to \( \theta \): - For \( \theta \) in the first and third quadrants: \[ \frac{dy}{d\theta} = -\csc^2 \theta \] - For \( \theta \) in the second and fourth quadrants: \[ \frac{dy}{d\theta} = \csc^2 \theta \] 5. **Evaluate \( \frac{dy}{d\theta} \) at \( \theta = \frac{3\pi}{4} \)**: The angle \( \frac{3\pi}{4} \) is in the second quadrant, where \( y = -\cot \theta \). Thus, we use: \[ \frac{dy}{d\theta} = \csc^2 \theta \] We need to calculate \( \csc^2 \left(\frac{3\pi}{4}\right) \): \[ \sin \left(\frac{3\pi}{4}\right) = \sin \left(\pi - \frac{\pi}{4}\right) = \sin \left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \] Therefore: \[ \csc \left(\frac{3\pi}{4}\right) = \frac{1}{\sin \left(\frac{3\pi}{4}\right)} = \frac{1}{\frac{\sqrt{2}}{2}} = \frac{2}{\sqrt{2}} = \sqrt{2} \] Thus: \[ \csc^2 \left(\frac{3\pi}{4}\right) = (\sqrt{2})^2 = 2 \] 6. **Final Result**: Therefore, the value of \( \frac{dy}{d\theta} \) at \( \theta = \frac{3\pi}{4} \) is: \[ \frac{dy}{d\theta} \bigg|_{\theta = \frac{3\pi}{4}} = 2 \]
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST 1

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MCQS|50 Videos
  • MOCK TEST 3

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MCQS|50 Videos

Similar Questions

Explore conceptually related problems

int(costheta-cos2theta)/(1-cos theta)d theta=

sqrt(((1+sin2theta))/(1-cos^(2)theta))["where" theta in [0,(pi)/(4)]]=

If y=1- cos theta, x =1 - sin theta,then (dy)/(dx) " at " theta = (pi)/(4) is

If f(theta)=tan(sin^(-1)sqrt((2)/(3+cos2 theta))) ,then: (A) f^(')((pi)/(4))=sqrt(2) (B) f((pi)/(4))=sqrt(2) (C) (d(f(theta)))/(d(cos theta)) at theta=(pi)/(4) is -sqrt(2) (D) (d(f(theta)))/(d(cos theta)) at theta=(pi)/(4) is -2

If x = a (theta + sin theta), y = b (1+ cos theta), then (dy)/(dx)" at "theta = (pi)/(2) is:

If x=a(2 theta-sin2 theta) and y=a(1-cos2 theta) find (dy)/(dx) when theta=(pi)/(3)

If x=a(theta-sin theta) and,y=a(1+cos theta) find (dy)/(dx) at theta=(pi)/(3)

If x= e^(theta )(sin theta - cos theta ) , y= e^(theta ) ( sin theta + cos theta ) then (dy)/(dx) at theta =(pi)/(4) is

if x=a cos^(4) theta, y= a sin^(4) theta, "then" (dy)/(dx)"at" theta=(3pi)/(4) is

If cos2 theta*cos3 theta*cos theta=(1)/(4) for 0

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-MOCK TEST 2-MCQS
  1. Given a matrix A=[a b c b c a c a b],w h e r ea ,b ,c are real positiv...

    Text Solution

    |

  2. The value of cos^-1 (cos12) - sin^-1 (sin 12) is

    Text Solution

    |

  3. Let alpha=(pi)/(5) and A=[(cosalpha,sinalpha),(-sinalpha,-cosalpha)], ...

    Text Solution

    |

  4. If in a triangle ABC, a^2+b^2+c^2=ca+ab sqrt3 then the triangle is

    Text Solution

    |

  5. The difference of the tangents of the angles which the lines x^(2)(sec...

    Text Solution

    |

  6. If |a|=|b|=|c|=1anda*b=b*c=c.a=costheta,then the maximum value of thet...

    Text Solution

    |

  7. If alpha,beta,gamma be the angles which a line makes with the coordina...

    Text Solution

    |

  8. let |a|=2sqrt(2),|b|=3 and the angle between a and b is (pi)/(4). If a...

    Text Solution

    |

  9. If y=sqrt(sinx+sqrt(sinx+sqrt(sinx+ . . .oo))), then (dy)/(dx) is equa...

    Text Solution

    |

  10. If y=sqrt(((1+cos2theta)/(1-cos2theta))),(dy)/(d theta) at theta=(3pi)...

    Text Solution

    |

  11. int(1)/(x^(2)(x^(4)+1)^(3//4))dx is equal to

    Text Solution

    |

  12. The solution of the differential equation (y^(2)dx-2xydy)=x^(3)y^(3)dy...

    Text Solution

    |

  13. x^(2)=xy is a relation which is

    Text Solution

    |

  14. A random variable X takes values 1,2,3 and 4 with probabilities (1)/(6...

    Text Solution

    |

  15. If the probability mass function of a discrete random variable X is P(...

    Text Solution

    |

  16. The order and degree of the differential equation [1+((dy)/(dx))^(2)]^...

    Text Solution

    |

  17. Using integration, find the area bounded by the curves y = |x-1| and ...

    Text Solution

    |

  18. The pair of lines joining origin to the points of intersection of, the...

    Text Solution

    |

  19. If P(A cup B)=3//4 " and " P(overline(A))=2//3, " then " P(overline(A)...

    Text Solution

    |

  20. A conic section is defined by the equations x=-1+sec t, y=3+3 tan t. t...

    Text Solution

    |