Home
Class 12
MATHS
int(1)/(x^(2)(x^(4)+1)^(3//4))dx is equa...

`int(1)/(x^(2)(x^(4)+1)^(3//4))dx` is equal to

A

`(1+(1)/(x^(4)))^(1//4)+C`

B

`(x^(4)+1)^(1//4)+C`

C

`(1-(1)/(x^(4)))^(1//4)+C`

D

`-(1+(1)/(x^(4)))^(1//4)+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{1}{x^2 (x^4 + 1)^{3/4}} \, dx \), we will follow these steps: ### Step 1: Rewrite the Integral We can rewrite the integral as: \[ I = \int \frac{1}{x^2} \cdot \frac{1}{(x^4 + 1)^{3/4}} \, dx \] ### Step 2: Factor Out \( x^4 \) Notice that we can factor \( x^4 \) from the term \( (x^4 + 1) \): \[ I = \int \frac{1}{x^2} \cdot \frac{1}{x^{3} (1 + \frac{1}{x^4})^{3/4}} \, dx \] This simplifies to: \[ I = \int \frac{1}{x^5 (1 + \frac{1}{x^4})^{3/4}} \, dx \] ### Step 3: Substitution Let \( t = 1 + \frac{1}{x^4} \). Then, we differentiate \( t \): \[ dt = -\frac{4}{x^5} \, dx \quad \Rightarrow \quad dx = -\frac{1}{4} x^5 \, dt \] From our substitution, we can express \( x^5 \) in terms of \( t \): \[ x^5 = \frac{-1}{4} dt \] ### Step 4: Substitute in the Integral Now substitute \( t \) into the integral: \[ I = \int \frac{-1/4}{(t)^{3/4}} \cdot \left(-\frac{1}{4} dt\right) \] This simplifies to: \[ I = \frac{1}{4} \int t^{-3/4} \, dt \] ### Step 5: Integrate Now we can integrate: \[ I = \frac{1}{4} \cdot \frac{t^{1/4}}{1/4} + C = t^{1/4} + C \] ### Step 6: Substitute Back Substituting back for \( t \): \[ I = \left(1 + \frac{1}{x^4}\right)^{1/4} + C \] ### Final Answer Thus, the final result of the integral is: \[ I = \left(1 + \frac{1}{x^4}\right)^{1/4} + C \] ---
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST 1

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MCQS|50 Videos
  • MOCK TEST 3

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MCQS|50 Videos

Similar Questions

Explore conceptually related problems

The value of int1/(x^(2)(x^(4)+1)^(3//4)) dx is equal to

int(1+x^(4))/((1-x^(4))^(3//2))dx is equal to

The integral int(dx)/(x^(2)(x^(4)+1)^(3//4)) equal

int (dx)/(x^(2)(x^(4)+1)^(3/4))is

"The integral " int(dx)/(x^(2)(x^(4)+1)^(3//4))" equals"

int(x^(4)-1)/(x^(2)(x^(4)+x^(2)+1)^(1/2))dx" is equal to "

int(2x^(3)-1)/(x^(4)+x)dx is equal to

int(x^(4))/(x^(2)+1)dx is equal to

int _(-1)^(1) x^(3) e^(x^(4)) dx is equal to

int(2x^(2)(1+2x^(2)))/((1+x^(2)+x^(4))^(2))dx is equal to

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-MOCK TEST 2-MCQS
  1. Given a matrix A=[a b c b c a c a b],w h e r ea ,b ,c are real positiv...

    Text Solution

    |

  2. The value of cos^-1 (cos12) - sin^-1 (sin 12) is

    Text Solution

    |

  3. Let alpha=(pi)/(5) and A=[(cosalpha,sinalpha),(-sinalpha,-cosalpha)], ...

    Text Solution

    |

  4. If in a triangle ABC, a^2+b^2+c^2=ca+ab sqrt3 then the triangle is

    Text Solution

    |

  5. The difference of the tangents of the angles which the lines x^(2)(sec...

    Text Solution

    |

  6. If |a|=|b|=|c|=1anda*b=b*c=c.a=costheta,then the maximum value of thet...

    Text Solution

    |

  7. If alpha,beta,gamma be the angles which a line makes with the coordina...

    Text Solution

    |

  8. let |a|=2sqrt(2),|b|=3 and the angle between a and b is (pi)/(4). If a...

    Text Solution

    |

  9. If y=sqrt(sinx+sqrt(sinx+sqrt(sinx+ . . .oo))), then (dy)/(dx) is equa...

    Text Solution

    |

  10. If y=sqrt(((1+cos2theta)/(1-cos2theta))),(dy)/(d theta) at theta=(3pi)...

    Text Solution

    |

  11. int(1)/(x^(2)(x^(4)+1)^(3//4))dx is equal to

    Text Solution

    |

  12. The solution of the differential equation (y^(2)dx-2xydy)=x^(3)y^(3)dy...

    Text Solution

    |

  13. x^(2)=xy is a relation which is

    Text Solution

    |

  14. A random variable X takes values 1,2,3 and 4 with probabilities (1)/(6...

    Text Solution

    |

  15. If the probability mass function of a discrete random variable X is P(...

    Text Solution

    |

  16. The order and degree of the differential equation [1+((dy)/(dx))^(2)]^...

    Text Solution

    |

  17. Using integration, find the area bounded by the curves y = |x-1| and ...

    Text Solution

    |

  18. The pair of lines joining origin to the points of intersection of, the...

    Text Solution

    |

  19. If P(A cup B)=3//4 " and " P(overline(A))=2//3, " then " P(overline(A)...

    Text Solution

    |

  20. A conic section is defined by the equations x=-1+sec t, y=3+3 tan t. t...

    Text Solution

    |