Home
Class 12
MATHS
A random variable X takes values 1,2,3 a...

A random variable X takes values 1,2,3 and 4 with probabilities `(1)/(6),(1)/(3),(1)/(3),(1)/(6)` respectively, then its mean and variance is equal to

A

`(5)/(2),(11)/(12)`

B

`(5)/(2),(11)/(16)`

C

`(5)/(3),(11)/(16)`

D

`(5)/(3),(11)/(12)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the mean and variance of the random variable \( X \) that takes values 1, 2, 3, and 4 with corresponding probabilities \( \frac{1}{6}, \frac{1}{3}, \frac{1}{3}, \frac{1}{6} \), we can follow these steps: ### Step 1: Define the random variable and its probabilities Let \( X = \{1, 2, 3, 4\} \) and the corresponding probabilities be: - \( P(X=1) = \frac{1}{6} \) - \( P(X=2) = \frac{1}{3} \) - \( P(X=3) = \frac{1}{3} \) - \( P(X=4) = \frac{1}{6} \) ### Step 2: Calculate the mean (expected value) of \( X \) The mean \( \mu \) of a random variable is calculated using the formula: \[ \mu = E(X) = \sum_{i=1}^{n} x_i P(X=x_i) \] Substituting the values: \[ \mu = 1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{3} + 3 \cdot \frac{1}{3} + 4 \cdot \frac{1}{6} \] ### Step 3: Simplify the mean calculation Calculating each term: - \( 1 \cdot \frac{1}{6} = \frac{1}{6} \) - \( 2 \cdot \frac{1}{3} = \frac{2}{3} = \frac{4}{6} \) - \( 3 \cdot \frac{1}{3} = 1 = \frac{6}{6} \) - \( 4 \cdot \frac{1}{6} = \frac{4}{6} \) Now, summing these: \[ \mu = \frac{1}{6} + \frac{4}{6} + \frac{6}{6} + \frac{4}{6} = \frac{1 + 4 + 6 + 4}{6} = \frac{15}{6} = \frac{5}{2} \] ### Step 4: Calculate the variance of \( X \) The variance \( \sigma^2 \) is calculated using the formula: \[ \sigma^2 = E(X^2) - (E(X))^2 \] First, we need to calculate \( E(X^2) \): \[ E(X^2) = \sum_{i=1}^{n} x_i^2 P(X=x_i) \] Calculating \( E(X^2) \): \[ E(X^2) = 1^2 \cdot \frac{1}{6} + 2^2 \cdot \frac{1}{3} + 3^2 \cdot \frac{1}{3} + 4^2 \cdot \frac{1}{6} \] Calculating each term: - \( 1^2 \cdot \frac{1}{6} = \frac{1}{6} \) - \( 2^2 \cdot \frac{1}{3} = 4 \cdot \frac{1}{3} = \frac{4}{3} = \frac{8}{6} \) - \( 3^2 \cdot \frac{1}{3} = 9 \cdot \frac{1}{3} = 3 = \frac{18}{6} \) - \( 4^2 \cdot \frac{1}{6} = 16 \cdot \frac{1}{6} = \frac{16}{6} \) Now, summing these: \[ E(X^2) = \frac{1}{6} + \frac{8}{6} + \frac{18}{6} + \frac{16}{6} = \frac{1 + 8 + 18 + 16}{6} = \frac{43}{6} \] ### Step 5: Calculate the variance Now, substituting back into the variance formula: \[ \sigma^2 = E(X^2) - (E(X))^2 = \frac{43}{6} - \left(\frac{5}{2}\right)^2 \] Calculating \( \left(\frac{5}{2}\right)^2 = \frac{25}{4} \): \[ \sigma^2 = \frac{43}{6} - \frac{25}{4} \] ### Step 6: Find a common denominator and simplify The common denominator for 6 and 4 is 12: \[ \sigma^2 = \frac{43 \cdot 2}{12} - \frac{25 \cdot 3}{12} = \frac{86}{12} - \frac{75}{12} = \frac{11}{12} \] ### Final Answer Thus, the mean and variance of the random variable \( X \) are: - Mean \( \mu = \frac{5}{2} \) - Variance \( \sigma^2 = \frac{11}{12} \)
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST 1

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MCQS|50 Videos
  • MOCK TEST 3

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MCQS|50 Videos

Similar Questions

Explore conceptually related problems

A random variable X takes values -1,0,1,2 with probabilities 1+2p(1+3p)/(4),(1-p)/(4),(1+2p)/(4),(-14p)/(4) respectively, where p varies over R. Then the minimum and maximum values of the mean of X are respectively

If X be a random variable taking values x_(1),x_(2),x_(3),….,x_(n) with probabilities P_(1),P_(2),P_(3) ,….. P_(n) , respectively. Then, Var (x) is equal to …….. .

A random variable X takes values 0, 1, 2, 3,… with probability proportional to (x+1)((1)/(5))^x . P(Xge2) equals

If a random variable "X" takes values ((-1)^(k)2^(k))/k, k=1,2,3,... with probabilities P(X=k)=(1)/(2^(k)) , then E(X)

Given a random variable that takes values X = {0, 1, 2} and has a probability distribution, P(0)= (1)/(4),P(1) = (1)/(2), P(2) = (1)/(4) . Then find the variance of X.

A random variable X takes the value 1,2,3 and 4 such that 2P(X=1)=3P(X=2)=P(X=3)=5P(X=4) . If sigma^(2) is the variance and mu is the mean of X then sigma^(2)+mu^(2)=

A random variable X has the following probability distribution: [[X=x,0,1,2,3], [P(X=x),(1)/(8),(1)/(2),(1)/(4),k]]

A random variate X takes the values 0,1,2,3 and its mean is 1.3. If P(X=3)=2P(X=1) and P(X=2)=0.3, then P(X=0) is equal to

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-MOCK TEST 2-MCQS
  1. Given a matrix A=[a b c b c a c a b],w h e r ea ,b ,c are real positiv...

    Text Solution

    |

  2. The value of cos^-1 (cos12) - sin^-1 (sin 12) is

    Text Solution

    |

  3. Let alpha=(pi)/(5) and A=[(cosalpha,sinalpha),(-sinalpha,-cosalpha)], ...

    Text Solution

    |

  4. If in a triangle ABC, a^2+b^2+c^2=ca+ab sqrt3 then the triangle is

    Text Solution

    |

  5. The difference of the tangents of the angles which the lines x^(2)(sec...

    Text Solution

    |

  6. If |a|=|b|=|c|=1anda*b=b*c=c.a=costheta,then the maximum value of thet...

    Text Solution

    |

  7. If alpha,beta,gamma be the angles which a line makes with the coordina...

    Text Solution

    |

  8. let |a|=2sqrt(2),|b|=3 and the angle between a and b is (pi)/(4). If a...

    Text Solution

    |

  9. If y=sqrt(sinx+sqrt(sinx+sqrt(sinx+ . . .oo))), then (dy)/(dx) is equa...

    Text Solution

    |

  10. If y=sqrt(((1+cos2theta)/(1-cos2theta))),(dy)/(d theta) at theta=(3pi)...

    Text Solution

    |

  11. int(1)/(x^(2)(x^(4)+1)^(3//4))dx is equal to

    Text Solution

    |

  12. The solution of the differential equation (y^(2)dx-2xydy)=x^(3)y^(3)dy...

    Text Solution

    |

  13. x^(2)=xy is a relation which is

    Text Solution

    |

  14. A random variable X takes values 1,2,3 and 4 with probabilities (1)/(6...

    Text Solution

    |

  15. If the probability mass function of a discrete random variable X is P(...

    Text Solution

    |

  16. The order and degree of the differential equation [1+((dy)/(dx))^(2)]^...

    Text Solution

    |

  17. Using integration, find the area bounded by the curves y = |x-1| and ...

    Text Solution

    |

  18. The pair of lines joining origin to the points of intersection of, the...

    Text Solution

    |

  19. If P(A cup B)=3//4 " and " P(overline(A))=2//3, " then " P(overline(A)...

    Text Solution

    |

  20. A conic section is defined by the equations x=-1+sec t, y=3+3 tan t. t...

    Text Solution

    |