Home
Class 12
MATHS
Maximize z = 10 x + 25 y , subject...

Maximize ` z = 10 x + 25 y `, subject to ` x le 3, y le 3, x + y le 5, x ge 0 , y ge 0 `.

Text Solution

Verified by Experts

First we draw the lines AB, CD and EF whose equations are ` x = 13 , y = 3 and x + y = 5 ` respectively.


The feasible region is OAPQDO which is shaped in the figure.
The vertices of feasible reagion are ` O ( 0, 0 ), A ( 3, 0 ) , P, Q and D ( 0 , 3 )`.
P is the point of intersection of the lines ` x + y = 5 and x = 3 `
Substituting ` x = 3 ` in ` x + y = 5 `, we get
` 3 + y = 5 `
` therefore y =2 `
` therefore P-= (3, 2 ) `
Q is the point of intersection of the lines ` x + y = 5 and y = 3 `
Substituting ` y = 3 ` in ` x + y = 5`, we get,
` x + 3 = 5" " therefore x = 2 `
` therefore Q -= (2, 3 ) `
The values of the objective function ` z = 10 x + 25 y ` at these vertices are
` z (O) = 10 ( 0 ) + 25 ( 0 ) = 0 `
`z(A) = 10 (3) +25(0) = 30 `
` z (P) = 10 ( 3) + 25 ( 2) = 30 + 50 = 80`
` z ( Q) = 10 ( 2 ) + 25 ( 3 ) = 20 + 75 =95`
` z ( D) = 10 (0) + 25 ( 3 ) = 75 `
` therefore ` z has maximum value 95, when ` x = 2 and y = 3`.
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise EXAMPLES FOR PRACTICE|8 Videos
  • LINE

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Multiple choice question|9 Videos
  • MATHEMATICAL LOGIC

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS 2 MARKS EACH|10 Videos

Similar Questions

Explore conceptually related problems

x + 2y le 40, 2x + y le 40, x ge 0, y ge 0

{:("Maximize" ,z = 3x + 5y , "subject to "),( ,x + 4y le 24 , 3x + y le 21 "," ),(,x + y le 9 , x ge 0 ", " y ge 0 ):}

Z= 4x + 7y x + 2y le 20, x + y le 15, x ge 0, y ge 0 .

Z =3x + 2y x + 2y le 10, 3x + y le 15, x ge 0, y ge 0

2x + y le 6, x + 2y le 8, x ge 0, y ge 0

y - 2x le 1, x + y le 2, x ge 0, y ge 0

x-2y le 2 , x +y le 3,-2x +y le 4, x ge 0,y ge 0

Maximize z = 4 x + 5y , subject to 2x + y ge7, 2x + 3 y le 15, x le 3, x ge 0 , y ge 0

Minimize z = 6 x + 2y , subject to 5 x + 9y le 90, x + y ge 4, y le 8, x ge 0, y ge 0 .