Home
Class 12
MATHS
Discuss the continuity of the following ...

Discuss the continuity of the following functions at the points shown against them :
`{:(f(x)=(1-sinx)/(((pi)/(2)-x)^(2))",", "for"x ne(pi)/(2)),(=3",","for"x=(pi)/(2)):}}at x=(pi)/(2)*`

Text Solution

Verified by Experts

`f((pi)/(3))=3" "..."Given"...(1)`
`underset(x to pi//2)limf(x)=underset(xto pi//2)lim(1-sin x)/(((pi)/(2)-x)^(2))`
Put `pi/2-x=theta. ` Then ` x=pi/2-theta and as x to (pi)/(2)*theta to 0`
`therefore underset(xto pi//2)limf(x)=underset(thetato 0)lim (1-sin ((pi)/(2)-theta))/(theta^(2))`
`underset(thetato 0)lim(1-cos theta)/(theta^(2))`
`=underset(thetato 0 )lim (1-cos theta)/(theta^(2))xx(1+cos theta)/(1+cos theta)`
`=underset(thetato 0)lim (1-cos^(2)theta)/(theta^(2)(1+cos theta))`
`=underset(thetato 0)lim (sin ^(2)theta)/(theta^(2))xx(1)/(underset(thetato 0)lim (1+cos theta))`
` =(1)^(2)xx(1)/(1+1)=1/2" "...(2)`
From (1) and (2), `underset(xtopi//2)limf(x)ne f ((pi)/(2))`
`therefore f` is discontinous at `x=(pi)/(2).`
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise EXAMPLES FOR PRACTICE|26 Videos
  • CONTINUITY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|6 Videos
  • BINOMIAL DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos
  • DEFINITE INTEGRALS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|10 Videos

Similar Questions

Explore conceptually related problems

f(x)={((5^(cosx)-1)/((pi)/(2)-x)",", x ne (pi)/(2)), (log 5"," , x =(pi)/(2)):} at x =(pi)/(2) is

f(x) = {{:((k cosx )/((pi - 2x)"," if x ne (pi)/(2))),(3"," if x = (pi)/(2)):} at x = (pi)/(2) .

Find the value of k, if the functions are continuous at the points given against them : {:(f(x)=(sqrt3-tan x)/(pi-3x)",","for" x nepi/3),(=k",","for" x=pi/3):}}at x=pi/3.

Find the value of k, if the functions are continuous at the points given against them : {:(f(x)=(x-pi/4)/(sin x-cosx)",","for" x nepi/4),(=k",","for" x=pi/4):}}at x=pi/4.

For what value of k, function f(x)={((k cosx)/(pi-2x)",","if "x ne (pi)/(2)),(3",", "if " x =(pi)/(2)):} is continuous at x=(pi)/(2) ?

Discuss the continuity of the functions at the points given against them. If a function is discontinuous, determine whether the discontiunity is removable. In this case, redefine the function, so that it becomes continuous : {:(f(x)=(1+cos 2x)^(4sec2x)",","for"x nepi/4),(=e^(4)",","for" x=pi/4):}}at x=pi/4*

If f(x)={{:((1-sinx)/(pi-2x),,","xne(pi)/(2)),(lambda,,","x=(pi)/(2)):},"be continuous at "x=(pi)/(2), then value of lambda is

Examine the function, f(x) = {{:((cos x)/(pi//2 -x)",",x ne pi//2),(1",",x = pi//2):} for continuity at x = pi//2

Find the values of k so that the function fis continuous at the indicated point in f(x)={((k cos x)/(pi-2x),quad if x!=(pi)/(2)),(3 if x=(pi)/(2)) at x=(pi)/(2)