Home
Class 12
MATHS
Find the value of k, if the function f g...

Find the value of k, if the function f given by :
`{:(F(X)=(8^(x)-2^(x))/(k^(x)-1)",","for"x ne0),(=2",","for"x=0):}`
is continous at `x=0.`

Text Solution

Verified by Experts

`f(0)=2" "..."Given"...(1)`
`underset(x to 0)limf(x)=underset(x to 0)lim(8^(x)-2^(x))/(k^(x)-1)`
`=underset(xto0)lim(2^(x)*4^(x)-2^(x))/(k^(x)-1)`
`=underset(xto0)lim(2^(x)(4^(x)-1))/(k^(x)-1)`
`=underset(x to 0)lim(2^(x)((4^(x)-1)/(x)))/(((k^(x)-1)/(x)))" "...[x to0, x ne0]`
`=(underset(xto0)lim2^(x)xxunderset(xto0)lim (4^(x)-1)/(x))/(underset(xto0)lim(k^(x)-1)/(x))`
`=(2^(0)xxlog4)/(logk)" "...[because underset(xto0)lim(x^(x)-1)/(x)=loga]`
Since f is continous at `x=0.`
`underset(x to 0) lim f(x)=f(0)`
`therefore(log4)/(logk)=2`
`thereforelogk=1/2log4=log2`
` thereforek=2.`
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise EXAMPLES FOR PRACTICE|26 Videos
  • CONTINUITY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|6 Videos
  • BINOMIAL DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos
  • DEFINITE INTEGRALS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|10 Videos

Similar Questions

Explore conceptually related problems

Find the value of k, if the function f given by : {:(f(x)=[tan((pi)/(4)+x)^(1/x)]",", "for"x ne0),(=k",", "for" x=0):} is continous at x=0.

Find the value of k, if the function f given by : {:(f(x)=(1-tanx)/(1-sqrt2sinx)",", "for" x nepi/4),(=k/2",","for"x=pi/4):} is continous at x =pi/4*

For what value of k, the function defined by f(x)={((log(1+2x)sin x^(@))/(x^(2))",", "for "x ne 0),(k",","for "x =0):} is continuous at x = 0 ?

If f(x) = {:((8^(x)-2^(x))/(k^(x)-1)", if " x != 0 ),(=2", if " x = 0 ):} is continuous at x = 0, then k = ….

If the function f(x) defined by {:(f(x),=x (sin)1/x,",","for"x != 0),(,=k, ",","for"x = 0):} is continuous at x = 0, then k =

If the function f(x) defined by f(x)={(x"sin"(1)/(x)",", "for "x ne 0),(k",", "for " x=0):} is continuous at x = 0, then k is equal to

If f(x)={(x^(k) sin((1)/(x))",",x ne 0),(0",", x =0):} is continuous at x = 0, then

If the function f(x) defined by f(x)={:{(xsin((1)/(x)),"for"xne0),(k,"for"x=0):} is continous at x=0 , then k=

If the function f(x)={((1-cosx)/(x^(2))",","for "x ne 0),(k,"for " x =0):} continuous at x = 0, then the value of k is