Home
Class 12
MATHS
Discuss the continous of the following f...

Discuss the continous of the following function on its domain, where
`f(x)=x^(2)-4, "for" 0lex le2`
`=2x+3, "for" 2 ltx le4`
`=x^(2)-05, "for" 4 lt x le6.`

Text Solution

Verified by Experts

The domanin of the function is `[0.6].`
For `0le xle2, f (x)=x^(2) -4,` being a polynomial function is continous.
For ` 2 lt x le4, f(x) 2x+3,` being a polynomial function is containous.
For `4 lt x le 6, f(x) =x^(2)-5,` being a polynomial function is continous.
Continuity `x=2`
`f(x) =x^(2)-4,` for `0 le x le 2 therefore f(2) =2^(2)-4=0`
`underset(x to ^(2-))lim f(x)=underset(x to 2)lim(x^(2)-4)=2^(2)-4=0`
`f(x)=2x+3, "for" 2 lt x le 4`
`thereforeunderset(x to 2^(+))limf(x) =underset(x to 2)lim(2x+3) =2(2)+3=7`
`therefore underset(xto2^(+))limf(x)nef(2)=underset(2 to 2^(-))lim f(x)`
`thereofore f` is not continous at `x=2.`
Contuinuity at `x=4`
`f(x) =2x+3,` for `2 lt x le 4 therefore f(4) =2(4)+3=11`
`underset(x to 4^(+))limf(x)=underset(x to 4)lim(x^(2)-5)=4^(2)-5 =11`
`therefore underset(x to ^(4-))limf(x) =underset(x to 4^(+))limf(x)=f(4)`
`therefore f` is continous at `x=4.`
`therefore f` is continous on its domain [0,6] except at the point `x=2,` where it is discontinous.
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise EXAMPLES FOR PRACTICE|26 Videos
  • CONTINUITY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|6 Videos
  • BINOMIAL DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos
  • DEFINITE INTEGRALS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|10 Videos

Similar Questions

Explore conceptually related problems

If f(x)={:{(x^(2)-4", for " 0 le x le 2),(2x+3", for " 2 lt x le 4),(x^(2)-5", for " 4 lt x le 6):} , then

If f (x) is continous on [0,8] defined as f(x)=x^(2)+ax, "for" 0lex lt 2 =3x+2, "for" 2 lex le4 =2ax+5b, "for" 4 lt x le 8, find a and b.

Discuss the continutily of the following fuction at x=1 and 2 f(x)={(5x-4 ", " x le1),(4x^2-3x", " 1 ltx lt2),(3x+4", "x ge 2):}

Discuss the applicability of Rolle's theorem of the following functions: f(x) =x^(2) in 2 le x le 3

Examine the continuity of the following function at x = 1 f(x) = {(x+2,-1 le x lt1),(4-x,1 le x):}

If f(x) is continuous on [0, 8] , where f(x)={:{(x^(2)+ax+6", for " 0 le x lt 2),(3x+2", for " 2 le x le 4),(2ax+5b", for " 4 lt x le 8):} , then

If f(x) is continuous in [0, 3], where f(x)={:{(3x-4", for " 0 le x le 2),(2x+k", for " 2 lt x le 3):} , then k=

Discuss the continuity of the functions on te intervals shown below them or against them : {:(f(x) =3x+5",","for" 0 lex lt 3),(=2x+8",","for" 3 le x lt5),(=x+13",","for" 5 lex le10):} on its domain.

Discuss the continuity of the function f, where f is defined by f(x){{:(3"," if 0 le x le 1),(4"," if 1lt x lt 3 ),(5"," if 3 le x le 10):}

Discuss the continutiy of the function f(x)= {(4x-2", " x le 2),(3x", " x gt 2):}