Home
Class 12
MATHS
int (dx)/(x^(2)(x^(4)+1)^(3/4))is...

`int (dx)/(x^(2)(x^(4)+1)^(3/4))is`

A

`-(1+(1)/(x^(4)))^(1/4)+c`

B

`(1)/(4)log|(x^(2))/(x^(4)+1)|+c`

C

`(1)/(2)log|x^(4)+1|+c`

D

`(1+(1)/(x^(4)))^((3)/(4))+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{dx}{x^2 (x^4 + 1)^{3/4}}, \] we will follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the integral in a more manageable form. We can factor out \(x^4\) from the term \((x^4 + 1)^{3/4}\): \[ \int \frac{dx}{x^2 (x^4 + 1)^{3/4}} = \int \frac{dx}{x^2 \left[x^4 \left(1 + \frac{1}{x^4}\right)\right]^{3/4}}. \] ### Step 2: Simplify the Expression Now, we can simplify the expression: \[ = \int \frac{dx}{x^2 \cdot x^{3} \cdot \left(1 + \frac{1}{x^4}\right)^{3/4}} = \int \frac{dx}{x^{5} \left(1 + \frac{1}{x^4}\right)^{3/4}}. \] ### Step 3: Substitute Let \(t = 1 + \frac{1}{x^4}\). Then, we differentiate to find \(dt\): \[ dt = -\frac{4}{x^5} dx \implies dx = -\frac{x^5}{4} dt. \] ### Step 4: Substitute Back into the Integral Now we substitute \(dx\) and \(t\) into the integral: \[ \int \frac{-\frac{x^5}{4} dt}{x^5 \cdot t^{3/4}} = -\frac{1}{4} \int \frac{dt}{t^{3/4}}. \] ### Step 5: Integrate Now we can integrate: \[ -\frac{1}{4} \int t^{-3/4} dt = -\frac{1}{4} \cdot \left(\frac{t^{1/4}}{1/4}\right) + C = -t^{1/4} + C. \] ### Step 6: Substitute Back for \(t\) Finally, we substitute back for \(t\): \[ -t^{1/4} = -\left(1 + \frac{1}{x^4}\right)^{1/4} + C. \] ### Final Answer Thus, the final answer is: \[ -\left(1 + \frac{1}{x^4}\right)^{1/4} + C. \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Example For Practice|128 Videos
  • DIFFERENTIATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MCQ|15 Videos
  • LINE

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Multiple choice question|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(dx)/(x^(2)(x^(4)+1)^((3)/(4)))

of int(dx)/(x^(2)(x^(4)+1)^((3)/(4)))

If int(dx)/(x^(2)(x^(4)+1)^(3//4))=A((x^(4)+1)/(x^(4)))^(B)+c, then

The integral int(dx)/(x^(2)(x^(4)+1)^(3//4)) equal

"The integral " int(dx)/(x^(2)(x^(4)+1)^(3//4))" equals"

Evaluate: int(dx)/(x^(2)(x^(4)+1)^((3)/(4)))(A)-(1+(1)/(x^(4)))^((1)/(4))+c(B)(1+(1)/(x^(4)))^((1)/(4))+c(C)-(1-(1)/(x^(4)))^((1)/(4))+c(D)-(1+(1)/(x^(4)))^((1)/(4))+c

int(1)/(x^(2)(x^(4)+1)^(3//4))dx=

int(1)/(x^(2)(x^(4)+1)^((3)/(4)))dx

int(1)/(x^(2)(x^(4)+1)^((3)/(4)))dx

Evaluate int(dx)/(x^(4)(x^(3)+1)^(2))