Home
Class 12
MATHS
int[1/logx-1/(logx)^2]dx=...

`int[1/logx-1/(logx)^2]dx=`

A

`(x)/(log x)+c`

B

x.logx+c

C

`(x)/((log x)^(2))+c`

D

`e^(x).logx+c`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Example For Practice|128 Videos
  • DIFFERENTIATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MCQ|15 Videos
  • LINE

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Multiple choice question|9 Videos

Similar Questions

Explore conceptually related problems

int_(e)^(e^(2)) (1/logx-1/((logx)^(2)))dx=

If int _(2)^(e) (1/(logx)-1/(logx)^(2))dx = a + b/(log2) , then

If int[(logx-1)/(1+(logx)^2)]^2dx=f(x)/(1+(g(x))^2)+c , then (A) f(x)=x (B) f(x)=x^2 (C) g(x)=logx (D) g(x)=(logx)^2

int(1)/(xlogx(2+logx))dx=

int (log x)/(1+logx)^2 dx

int[f(logx)+f'(logx)]dx=

int[f(logx)+f'(logx)]dx=

Evaluate int e^x(1/logx-1/(x(logx)^2)) dx

Evaluate : int[(1)/(logx)-(1)/((log x)^(2))]dx