Home
Class 12
MATHS
int(0)^(pi//2)(cosx)/((1+sin^(2)x))dx=?...

`int_(0)^(pi//2)(cosx)/((1+sin^(2)x))dx=?`

Text Solution

Verified by Experts

Let `I=int_(0)^(pi//2)(cosx)/(1+sin^(2)x)dx`
Put `sin x=t" "therefore" "cos x dx =dt`
When `x=0, t = sin 0 =0." When "x=(pi)/(2),t=sin.(pi)/(2)=1`
`therefore I=int_(0)^(1)(1)/(1+t^(2))dt=[tan^(-)t]_(0)^(1)`
`=tan^(-1)1- tan^(-1)0`
`=(pi)/(4)-0=(pi)/(4).`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for Practice|66 Videos
  • DEFINITE INTEGRALS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise 14.2 PROPERTIES OF DEFINITE INTEGRALS|4 Videos
  • CONTINUITY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|6 Videos
  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise M.C.Q|12 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2)(sinx cosx)/(1+sin^(4)x)dx=

int_(0)^( pi/2)(cosx)/(1+sin x)dx

Evaluate : int_(0)^(pi//2) (cosx)/((1+sin x)(2+sinx)) dx

Evaluate : (i) int_(0)^(pi//2)(cosx)/((cos\ (x)/(2)+sin\ (x)/(2)))dx (ii) int_(0)^(pi//2)(cosx)/((1+cosx+sinx))dx

int_(0)^(pi//2)(cosx)/((sinx+cosx))dx=(pi)/(4)

int_(0)^( pi)(x)/((1+sin^(2)x))dx

Evaluate the following integrals: int_(0)^(pi//2) (cosx)/(1+cos x+sin x)dx

int_(0)^(pi//2) (cosx)/((1+sin x)(2+sin x) ) dx =

int_(pi//4)^(pi//2)((1-3cosx))/(sin^(2)x)dx

int_(0)^((pi)/2)(cos2x)/(cosx+sinx)dx=