Home
Class 12
MATHS
Evaluate the following : int(0)^(pi//...

Evaluate the following :
`int_(0)^(pi//2)(1)/(1+sqrt(tanx))dx`

Text Solution

Verified by Experts

Let `I=int_(0)^(pi//2)(dx)/(1+sqrt(tanx))`
`=int_(0)^(pi//2)(dx)/(1+sqrt((sinx)/(cosx)))`
`=int_(0)^(pi//2)(sqrt(cosx))/(sqrt(cosx)+sqrt(sinx))dx" …(1)"`
We use the property `int_(0)^(a)f(a-x)dx.`
Hence in I, we change x by `(pi//2)-x.` Then
`I=int_(0)^(pi//2)(sqrt(cos[(pi//2)-x]))/(sqrt(cos[(pi//2)-x])+sqrt(sin[(pi//2)-x]))dx`
`=int_(0)^(pi//2)(sqrt(sinx))/(sqrt(sinx)+sqrt(cosx))dx" ...(2)"`
Adding (1) and (2). we get,
`2I=int_(0)^(pi//2)(sqrtcosx+sqrtsinx)/(sqrtcosx+sqrtsinx)dx+int_(0)^(pi//2)(sqrtsinx)/(sqrtsinx+sqrtcosx)dx`
`=int_(0)^(pi//2)(sqrtcosx+sqrtsinx)/(sqrtcosx+sqrtsinx)dx`
`=int_(0)^(pi//2)1dx=[x]_(0)^(pi//2)`
`=(pi//2)-0=pi/2" "therefore I=pi//4.`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for Practice|66 Videos
  • DEFINITE INTEGRALS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise 14.2 PROPERTIES OF DEFINITE INTEGRALS|4 Videos
  • CONTINUITY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|6 Videos
  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise M.C.Q|12 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2)(1)/(1+sqrt(tan x))dx=

Evaluate the following : int_(pi//6)^(pi//3)(1)/(1+sqrt(cotx))dx

int_(0)^(pi//2)(1)/((1+sqrt(cotx)))dx=?

Evaluate the following: int_0^(pi/2) sqrt(tanx)/(1+sqrt(tanx))dx

Evaluate the following : int_(0)^(pi//2)(sqrt(tanx))/(sqrt(tanx)+sqrt(cotx))dx

int_(0)^(pi//2)(1)/((1+tanx))dx=?

Evaluate the following: int_0^(pi/2) dx/(1+tanx)

Evaluate the following : int_(0)^(pi//4)e^(x)(1+tanx+tan^(2)x)dx

Evaluate the following : int_(0)^(pi//2)sqrt(1- cos x)dx

int_(0)^(pi//2)(tanx)/((1+tanx))dx=?