Home
Class 12
MATHS
Evaluate the following : int(0)^(pi//...

Evaluate the following :
`int_(0)^(pi//2)(root3(secx))/(root3(secx)+root3("cosec x"))dx`

Text Solution

Verified by Experts

Let `I=int_(0)^(pi//2)(root3(secx))/(root3(secx)+root3("cosec x"))dx" …(1)"`
We use the property, `int_(0)^(a)f(x)dx=int_(0)^(a)f(a-x)dx`
Hence in I, we change x by `(pi//2)-x.` Then
`I=int_(0)^(pi//2)(root3(sec[(pi//2)-x]))/(root3(sec[(pi//2)-x])+root3("cosec "[(pi//2)-x]))dx`
`=int_(0)^(pi//2)(root3("cosec x"))/(root3("cosec x")+root3("sec x"))dx" ...(2)"`
Adding (1) and (2), we get,
`2I=int_(0)^(pi//2)(root3(secx))/(root3(secx)+root3("cosec x"))dx+int_(0)^(pi//2)(root3("cosec x"))/(root3("cosec x")+root3(sec x))dx`
`=int_(0)^(pi//2)(root3(secx)+root3(" cosec x"))/(root3(secx)+root3("cosec x"))dx=int_(0)^(pi//2)1dx=[x]_(0)^(pi//2)`
`=(pi//2)-0=pi//2" "therefore I=pi//4.`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for Practice|66 Videos
  • DEFINITE INTEGRALS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise 14.2 PROPERTIES OF DEFINITE INTEGRALS|4 Videos
  • CONTINUITY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|6 Videos
  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise M.C.Q|12 Videos

Similar Questions

Explore conceptually related problems

int_(0) ^( pi//2) (root(n)(secx))/(root(n) (secx )+ root (n) ("cosec "x)) dx=

int _(0)^(pi //2)((root(n)(secx))/(root(n)(secx)+root(n)("cosec"x)))dx=

Evaluate the following : int_(pi//6)^(pi//3)(root3(sinx))/(root3(sinx)+root3(cosx))dx

Evaluate the following : int_(1)^(3)(root3(x+5))/(root3(x+5)+root3(9-x))dx.

Evaluate the following : int_(0)^(pi)(x tan x)/(secx+cos x)dx

int_(0)^(pi/3)(x)/(1+secx)dx

int_0^(pi/2) root(3)(cosx)/(root(3)(cosx)+root(3)(sinx))dx

Evaluate the following : int_(0)^(pi)(x tanx)/(secx "cosec x")dx

int_(0)^(pi//2)(root3tanx)/((root3tanx+root3cotx))dx=?

Evaluate of each of the following integrals (1-int_(0)^(5)(root(3)(x+4))/(root(3)(x+4)+root(3)(9-x)dx)