Home
Class 12
MATHS
Evaluate the following : int(0)^(pi//2...

Evaluate the following : `int_(0)^(pi//2)(sinx-cosx)/(1+sinx.cosx)dx`

Text Solution

Verified by Experts

Let `I=int_(0)^(pi//2)(sinx-cosx)/(1+sinx.cosx)dx`
We use the property, `int_(0)^(a)f(x)dx=int_(0)^(a)f(a-x)dx.`
Here `a=(pi)/(2).` Hence changing x by `(pi)/(2)-x,` we get,
`I=int_(0)^(pi//2)(sin((pi)/(2)-x)-cos((pi)/(2)-x))/(1+sin((pi)/(2)-x).cos((pi)/(2)-x))dx`
`=int_(0)^(pi//2)(cosx-sinx)/(1+cosx.sinx)dx`
`=-int_(0)^(pi//2)(sinx-cosx)/(1+sinx.cosx)dx=-I`
`therefore" "2I=0" "therefore I=0.`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Examples for Practice|66 Videos
  • DEFINITE INTEGRALS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise 14.2 PROPERTIES OF DEFINITE INTEGRALS|4 Videos
  • CONTINUITY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|6 Videos
  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise M.C.Q|12 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2)((sinx-cosx))/((1+sinxcosx))dx=0

int_(0)^(pi//2)(sinx-cosx)log(sinx+cosx)dx=0

Evaluate the following : int_(0)^(pi//2)(sinx)/(sinx+cosx)dx

int_(0)^(pi//2) abs(sinx-cosx) dx=

int_(0)^(2pi)(sinx+cosx)dx=

Evaluate the following : int_(0)^(pi//2)(cosx)/((4+sinx)(3+sinx))dx

Evaluate int_(0)^(pi//2)(sinx-cosx)/(1+sinx*cosx)dx

Evaluate the following: int_0^(pi/2) |cosx-sinx|dx

Evaluate int_0^(pi/2) (sinx-cosx)/(1+sinxcosx)dx

int_(0)^(pi//2)(sinx)/((sinx+cosx))dx=?