Home
Class 12
MATHS
The value of the integral int0^(2a)[(f(...

The value of the integral `int_0^(2a)[(f(x))/({f(x)+f(2a-x)})]dxi se q u a ltoa`

A

0

B

a

C

2a

D

`(a)/(2).`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise 14.2 PROPERTIES OF DEFINITE INTEGRALS|4 Videos
  • CONTINUITY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|6 Videos
  • DIFFERENTIAL EQUATIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise M.C.Q|12 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(0)^(2a)[(f(x))/({f(x)+f(2a-x)})]dx is equal to a

The value of the integral int_(0)^(2a) (f(x))/(f(x)+f(2a-x))dx is equal to

The value of the integral int_(0)^(pi//2)(f(x))/(f(x)+f(pi/(2)-x))dx is

If f(1 + x) = f(1 - x) (AA x in R) , then the value of the integral I = int_(-7)^(9)(f(x))/(f(x)+f(2-x))dx is

The value of the integral int f_(0)^(2)|x^(2)-1|dx is

Let f(x) be a continuous function such that f(a-x)+f(x)=0 for all x in [0,a] . Then, the value of the integral int_(0)^(a) (1)/(1+e^(f(x)))dx is equal to

If the function f(x) is symmetric about the line x=3 , then the value of the integral I=int_(-2)^(8)(f(x))/(f(x)+f(6-x))dx is

Prove that int_0^(2a) f(x)/(f(x)+f(2a-x))dx=a

If f(x) is a continuous function satisfying f(x)=f(2-x) , then the value of the integral I=int_(-3)^(3)f(1+x)ln ((2+x)/(2-x))dx is equal to

Let f(x) be a continuous function on [0,4] satisfying f(x)f(4-x)=1. The value of the definite integral int_(0)^(4)(1)/(1+f(x))dx equals -