Home
Class 9
MATHS
Add (3sqrt(2) + 7 sqrt(3)) and (sqrt(2...

Add `(3sqrt(2) + 7 sqrt(3))` and `(sqrt(2) - 5sqrt(3))`.

A

`4sqrt(2)+2sqrt(3)`

B

`2sqrt(2)+4sqrt(3)`

C

`2sqrt(2)+2sqrt(3)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A

We have
`(3sqrt(2) + 7sqrt(3))+(sqrt(2) - 5sqrt(3)) = (3sqrt(2)+sqrt(2))+(7sqrt(3)-5sqrt(3))`
`= (3+1)sqrt(2) + (7-5)sqrt(3)`
` = (4sqrt(2) + 2sqrt(3))`
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEMS

    RS AGGARWAL|Exercise Exericse 1A|9 Videos
  • NUMBER SYSTEMS

    RS AGGARWAL|Exercise Exericse 1B|5 Videos
  • MEAN , MEDIAN AND MODE OF UNGROUPED DATA

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|18 Videos
  • POLYNOMIALS

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|32 Videos

Similar Questions

Explore conceptually related problems

Add and and sqrt(2)-3sqrt(3)

Do as directed: (i) Add : sqrt(125 + 2 sqrt(27) and - 5 sqrt(5) - sqrt(3) (ii) Add: sqrt(7) - sqrt(11) and sqrt(5) - sqrt(11) + sqrt(13) (iii) Multiply : 2 sqrt(2) by 5 sqrt(2) (iv) Multiply : (-3 + sqrt(5)) by 3 (v) Divide : 7 sqrt(5) by - 14 sqrt(125) Divide : 7 sqrt(5) by -14 sqrt(125) (vi) Divide : 2 sqrt(216) - 3 sqrt(27) by 3

Add 2sqrt(2)+5sqrt(3) and sqrt(2)-3sqrt(3)

Add (i) (2sqrt(3)-5sqrt(2)) and (sqrt(3) + 2sqrt(2)) (ii) (2sqrt(2) + 5sqrt(3) - 7 sqrt(5) and (3sqrt(3)-sqrt(2) + sqrt(5)) (iii) ((2)/(3) sqrt(7) -(1)/(2)sqrt(2)+6sqrt(11)) and ((1)/(3)sqrt(7) + (3)/(2)-sqrt(11))

If a = (sqrt(3) - sqrt(2))/(sqrt(3) + sqrt(2)) and b = (sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2)) then value of sqrt(3a^2 - 5ab + 3b^2) is

The value of 5sqrt(3) + 7sqrt(2) - sqrt(6) - 23/(sqrt(2) + sqrt(3) + sqrt(6)) is:

In each of the following determine rational number a and b:(3+sqrt(2))/(3-sqrt(2))=a+b sqrt(2) (ii) (5+3sqrt(3))/(7+4sqrt(3))=a+b sqrt(3)

Rationalise the denominator of each of the following. (i) (1)/(sqrt(7)) (ii) (sqrt(5))/(2sqrt(3)) (iii) (1)/(2+ sqrt(3)) (1)/(sqrt(3)) (v) (1)/((5+3sqrt(2)) (vi) (1)/(sqrt(7) - sqrt(6)) (vi) (1)/(sqrt(7) - sqrt(6)) (viii) (1+ sqrt(2))/(2-sqrt(2)) (ix) (3-2sqrt(2))/(3+2sqrt(2))

Simplify (i) (4+ sqrt(5))/(4-sqrt(5))+(4-sqrt(5))/(4+sqrt(5)) (ii) (1)/(sqrt(3) + sqrt(2)) - (2)/(sqrt(5)-sqrt(3)) -(2)/(sqrt(2) - sqrt(5)) (iii) (2+sqrt(3))/(2-sqrt(3)) + (2-sqrt(3))/(2+sqrt(3)) + (sqrt(3)-1)/(sqrt(3)+1) (iv) (2+sqrt(6))/(sqrt(2)+sqrt(3))+(6sqrt(2))/(sqrt(6)+sqrt(3)) -(8sqrt(3))/(sqrt(6)+sqrt(2))

If x=(sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3)) and y=(sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(2)), then x+y+xy=9(b)5(c)17(d)7, then