Home
Class 9
MATHS
Prove that (i) (a^(-1))/(a^(-1) + b^(...

Prove that
(i) `(a^(-1))/(a^(-1) + b^(-1)) + (a^(-1))/(a^(-1)-b^(-1)) = (2b^(2))/(b^(2) -a^(2))`
(ii) `(1)/(1+x^(a-b)) + (1)/(1+x^(b-a)) = 1`

Text Solution

Verified by Experts

We have .
(i) `(a^(-1))/(a^(-1) + b^(-1)) +(a^(-1))/(a^(-1)-b^(-1)) = ((1)/(a))/((1)/(a) +(1)/(b)) +((1)/(a))/((1)/(a)- (1)/(b))=((1)/(a))/(((b+a)/(ab)))+((1)/(a))/(((b-a)/(ab)))`
`= (1)/(a).(ab)/((b+a)) +(1)/(a).(ab)/((b-a)) = (b)/(b+a) +(b)/(b-a)`
` = (b(b-a)+b(b+a))/((b+a)(b-a))=(b^(2) -ab+b^(2) + ab)/(b^(2) -a^(2))`
`= (2b^(2))/(b^(2) -a^(2))`
(ii) `(1)/(1+x^(b-a)) +(1)/(1+x^(b-a)) = (1)/(1+x^(a).x^(-b)) +(1)/(1+x^(a).x^(-b))+(1)/(1+x^(b) .x^(-a))`
` = (1)/(1+(x^(a))/(x^(b))) +(1)/(1+(x^(b))/(x^(a))) +(1)/(((x^(a) +x^(b))/x^(b))) +(1)/(((x^(a) + x^(b))/(x^(a))))`
` =(x^(b))/(x^(a) + x^(b)) +(x^(a))/(x^(a) + x^(b)) = (x^(b) + x^(b))/(x^(a) + x^(b)) = 1`
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEMS

    RS AGGARWAL|Exercise Exericse 1A|9 Videos
  • NUMBER SYSTEMS

    RS AGGARWAL|Exercise Exericse 1B|5 Videos
  • MEAN , MEDIAN AND MODE OF UNGROUPED DATA

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|18 Videos
  • POLYNOMIALS

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|32 Videos

Similar Questions

Explore conceptually related problems

Prove that :(a^(-1))/(a^(-1)+b^(-1))+(a^(-1))/(a^(-1)-b^(-1))=(2b^(2))/(b^(2)-a^(2))

Prove that: (1)/(1+x^(a-b))+(1)/(1+x^(b-a))=1

Prove that : tan^(-1) a - tan^(-1) b = cos ^(-1) [(1+ab)/(sqrt((1+a^(2))(1+b^(2))))]

Prove that. (i) sqrt(x^(-1) y) .sqrt(y^(-1) z) . Sqrt(z^(-1) x) = 1 (ii) ((1)/(x^(a-b)))^((1)/(a-c)).((1)/(x^(b-c))).((1)/(x^(c-b)))^((1)/(c-b))= 1 (iii) (x^(a(b-c)))/(x^(b(a-c))) div ((x^(b))/(x^(a))) (iv) ((x^(a+b))^(2)(x^(b+c))^(2)(x^(c+a))^(2))/((x^(a)x^(b)x^(c))^(4))

Prove that : cos ^(-1) ((1- a^(2))/(1+a)) + cos ^(-1)((1-b^(2))/(1+b^(2))) = 2 tan ^(-1) .(a+b)/(1-ab)

If cos^(-1) ((1-a^(2))/(1+a^(2)))- cos^(-1) ((1-b^(2))/(1+b^(2))) = 2 tan^(-1) x , then x is

if cos^(-1)((1-a^(2))/(1+a^(2)))-cos^(-1)((1-b^(2))/(1+b^(2)))=2tan^(-1)x then x is:

If sin^(-1)((2a)/(1+a^(2)))+sin^(-1)((2b)/(1+b^(2)))=2tan^(-1)x

Prove that: tan^(-1){(pi)/(4)+(1)/(2)(cos^(-1)a)/(b)}+tan{(pi)/(4)-(1)/(2)(cos^(-1)a)/(b)}=(2b)/(a)

Prove that tan(pi/4 +1/2 cos^(-1) (a/b)) + tan^(-1) (pi/4 -1/2 cos^(-1) (a/b)) =2b/a