Home
Class 9
MATHS
The value of 0.bar(45)+ 0.bar(36) is...

The value of `0.bar(45)+ 0.bar(36)` is

A

`(67)/(33)`

B

`(24)/(11)`

C

`(9)/(10)`

D

`(167)/(110)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the value of \(0.\overline{45} + 0.\overline{36}\), we will follow these steps: ### Step 1: Define the repeating decimals Let: - \( x = 0.\overline{45} \) - \( y = 0.\overline{36} \) ### Step 2: Convert \( x \) to a fraction To convert \( x \) into a fraction: 1. Multiply \( x \) by 100 (since the repeating part has 2 digits): \[ 100x = 45.\overline{45} \] 2. Now, subtract \( x \) from \( 100x \): \[ 100x - x = 45.\overline{45} - 0.\overline{45} \] This simplifies to: \[ 99x = 45 \] 3. Solving for \( x \): \[ x = \frac{45}{99} \] 4. Simplifying \( \frac{45}{99} \): \[ x = \frac{5}{11} \] ### Step 3: Convert \( y \) to a fraction Now, let's convert \( y \) into a fraction: 1. Multiply \( y \) by 100: \[ 100y = 36.\overline{36} \] 2. Subtract \( y \) from \( 100y \): \[ 100y - y = 36.\overline{36} - 0.\overline{36} \] This simplifies to: \[ 99y = 36 \] 3. Solving for \( y \): \[ y = \frac{36}{99} \] 4. Simplifying \( \frac{36}{99} \): \[ y = \frac{4}{11} \] ### Step 4: Add \( x \) and \( y \) Now we add \( x \) and \( y \): \[ x + y = \frac{5}{11} + \frac{4}{11} = \frac{5 + 4}{11} = \frac{9}{11} \] ### Final Answer The value of \( 0.\overline{45} + 0.\overline{36} \) is: \[ \frac{9}{11} \] ---
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEMS

    RS AGGARWAL|Exercise ASSERTION -AND- REASON TYPE|4 Videos
  • NUMBER SYSTEMS

    RS AGGARWAL|Exercise MATCHING OF COLUMNS|2 Videos
  • NUMBER SYSTEMS

    RS AGGARWAL|Exercise Exercise 1G|18 Videos
  • MEAN , MEDIAN AND MODE OF UNGROUPED DATA

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|18 Videos
  • POLYNOMIALS

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|32 Videos

Similar Questions

Explore conceptually related problems

The value of 0.bar(09)=

The value of (0.bar(63) + 0.bar(37)) is

The value of 0.bar(3) + 0.bar(6) + 0. bar( 7 ) + 0. bar( 8 ) in fraction will be

Evaluate : 1.bar(45)+0.bar(3)

Evaluate 0.bar(65) + 2.bar(61) .