Home
Class 9
MATHS
'""^(3)sqrt(2) xx ""^(4)sqrt(2) xx ""^(1...

'""^(3)sqrt(2) xx ""^(4)sqrt(2) xx ""^(12)sqrt(32)= ?`

A

2

B

`sqrt(2)`

C

`2sqrt(2)`

D

`4sqrt(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sqrt[3]{2} \times \sqrt[4]{2} \times \sqrt[12]{32} \), we can follow these steps: ### Step 1: Rewrite the roots in exponential form We can express the roots in terms of exponents: \[ \sqrt[3]{2} = 2^{1/3}, \quad \sqrt[4]{2} = 2^{1/4}, \quad \text{and} \quad \sqrt[12]{32} = 32^{1/12} \] ### Step 2: Simplify \( \sqrt[12]{32} \) Next, we need to express 32 as a power of 2: \[ 32 = 2^5 \] Thus, \[ \sqrt[12]{32} = (2^5)^{1/12} = 2^{5/12} \] ### Step 3: Combine all the terms Now we can rewrite the entire expression: \[ 2^{1/3} \times 2^{1/4} \times 2^{5/12} \] ### Step 4: Add the exponents Since the bases are the same, we can add the exponents: \[ 2^{1/3 + 1/4 + 5/12} \] ### Step 5: Find a common denominator The common denominator for \(3\), \(4\), and \(12\) is \(12\). We convert each fraction: \[ 1/3 = 4/12, \quad 1/4 = 3/12, \quad 5/12 = 5/12 \] Now we can add them: \[ 4/12 + 3/12 + 5/12 = \frac{4 + 3 + 5}{12} = \frac{12}{12} = 1 \] ### Step 6: Write the final result Now we can write the final expression: \[ 2^{1} = 2 \] Thus, the final answer is: \[ \boxed{2} \] ---
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEMS

    RS AGGARWAL|Exercise ASSERTION -AND- REASON TYPE|4 Videos
  • NUMBER SYSTEMS

    RS AGGARWAL|Exercise MATCHING OF COLUMNS|2 Videos
  • NUMBER SYSTEMS

    RS AGGARWAL|Exercise Exercise 1G|18 Videos
  • MEAN , MEDIAN AND MODE OF UNGROUPED DATA

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|18 Videos
  • POLYNOMIALS

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|32 Videos

Similar Questions

Explore conceptually related problems

Examine whether of the following numbers are rational or irrational . (i) 3 + sqrt(3)" " (ii) sqrt(7)-2 " " (iii)""^(3)sqrt(5) xx ""^(3)sqrt(25) sqrt(7) xx sqrt(343)" " (v)sqrt((13)/(117))" " (vi)sqrt(8) xx sqrt(2)

sqrt(2)xx sqrt(3)

(5sqrt(2)xx7sqrt(7))/(3sqrt(27)xx sqrt(125))=

2sqrt(2)xx3sqrt(3)xx5sqrt(2)xx9sqrt(3)=?

sqrt(2)xx sqrt(3+sqrt(2)+sqrt(3))-1-sqrt(2)-sqrt(3)

((1)/(sqrt(2))+(3)/(sqrt(2)))times sqrt(2)=?

Given that sqrt(3) = 1.732, the value of (3 + sqrt(6 ))/( 5 sqrt(3) - 2 sqrt(12) - sqrt(32) + sqrt(50)) is

Evaluate : ( sqrt(2) - 1/sqrt(2) ) times ( sqrt(2) - 1/sqrt(2) )

(sqrt(2-x)-sqrt(2+x))times(sqrt(2-x)+sqrt(2+x))=?