Home
Class 9
MATHS
If sqrt(2) = 1.41 then (1)/(sqrt(2))'= ?...

If `sqrt(2) = 1.41` then `(1)/(sqrt(2))'= ?

A

0.075

B

0.75

C

0.44

D

0.705

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the value of \( \frac{1}{\sqrt{2}} \) given that \( \sqrt{2} = 1.41 \), we can follow these steps: ### Step-by-Step Solution: 1. **Identify the given value**: We know that \( \sqrt{2} = 1.41 \). 2. **Set up the expression**: We need to find \( \frac{1}{\sqrt{2}} \). 3. **Substitute the value of \( \sqrt{2} \)**: Replace \( \sqrt{2} \) in the expression: \[ \frac{1}{\sqrt{2}} = \frac{1}{1.41} \] 4. **Perform the division**: Now we will calculate \( \frac{1}{1.41} \). To do this, we can use a calculator or perform long division. For simplicity, let's perform the division: \[ \frac{1}{1.41} \approx 0.707 \] 5. **Conclusion**: Therefore, the value of \( \frac{1}{\sqrt{2}} \) is approximately \( 0.707 \). ### Final Answer: \[ \frac{1}{\sqrt{2}} \approx 0.707 \]
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEMS

    RS AGGARWAL|Exercise ASSERTION -AND- REASON TYPE|4 Videos
  • NUMBER SYSTEMS

    RS AGGARWAL|Exercise MATCHING OF COLUMNS|2 Videos
  • NUMBER SYSTEMS

    RS AGGARWAL|Exercise Exercise 1G|18 Videos
  • MEAN , MEDIAN AND MODE OF UNGROUPED DATA

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|18 Videos
  • POLYNOMIALS

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|32 Videos

Similar Questions

Explore conceptually related problems

If sqrt(2) = 1.4141 then sqrt(((sqrt(2)-1))/((sqrt(2)+1)))= ?

If sqrt(2)=1.4142 then sqrt((sqrt(2)-1)/(sqrt(2)+1)) is equal to

If sqrt2=1.4142 then sqrt((sqrt2-1)/(sqrt2+1))=

If sqrt(2)=1.41 and sqrt(5)=2.24, find the value of (3)/(8sqrt(2)+5sqrt(5))+(2)/(8sqrt(2)-5sqrt(5))

If sqrt(2)=1.414 and sqrt(3)=1.732, then the value of (1+sqrt(2))/(sqrt(3)+sqrt(2))+(1-sqrt(2))/(sqrt(3)-sqrt(2)) is

If a=(sqrt(2)+1)/(sqrt(2)-1) and b=(sqrt(2)-1)/(sqrt(2)+1) ,then find the value of a^(2)+b^(2)-4ab

If sqrt(x) + sqrt(y) = sqrt(a) , then (dy)/(dx) = 1/(2sqrt(x)) + 1/(2sqrt(y)) = 1/(2sqrt(a))

The sum of the series (1)/(sqrt(1)+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+ . . . . .+(1)/(sqrt(n^(2)-1)+sqrt(n^(2))) equals