Home
Class 9
MATHS
simpily ((3125)/(243))^(4//5)...

simpily `((3125)/(243))^(4//5)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \(\left(\frac{3125}{243}\right)^{\frac{4}{5}}\), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ \left(\frac{3125}{243}\right)^{\frac{4}{5}} \] We can rewrite the exponent \(\frac{4}{5}\) as: \[ \frac{4}{5} = 4 \times \frac{1}{5} \] Thus, we can express the original expression as: \[ \left(\frac{3125}{243}\right)^{4 \times \frac{1}{5}} = \left(\left(\frac{3125}{243}\right)^{\frac{1}{5}}\right)^{4} \] ### Step 2: Calculate the fifth root Next, we need to calculate \(\left(\frac{3125}{243}\right)^{\frac{1}{5}}\). We can factor \(3125\) and \(243\): - \(3125 = 5^5\) - \(243 = 3^5\) So, we can rewrite the fraction: \[ \frac{3125}{243} = \frac{5^5}{3^5} \] ### Step 3: Apply the fifth root Now we apply the fifth root: \[ \left(\frac{5^5}{3^5}\right)^{\frac{1}{5}} = \frac{5^{5 \cdot \frac{1}{5}}}{3^{5 \cdot \frac{1}{5}}} = \frac{5^1}{3^1} = \frac{5}{3} \] ### Step 4: Raise to the power of 4 Now we raise \(\frac{5}{3}\) to the power of \(4\): \[ \left(\frac{5}{3}\right)^{4} = \frac{5^4}{3^4} \] ### Step 5: Calculate \(5^4\) and \(3^4\) Calculating \(5^4\) and \(3^4\): - \(5^4 = 625\) - \(3^4 = 81\) Thus, we have: \[ \frac{5^4}{3^4} = \frac{625}{81} \] ### Final Answer Therefore, the simplified form of \(\left(\frac{3125}{243}\right)^{\frac{4}{5}}\) is: \[ \frac{625}{81} \] ---
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEMS

    RS AGGARWAL|Exercise MATCHING OF COLUMNS|2 Videos
  • MEAN , MEDIAN AND MODE OF UNGROUPED DATA

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|18 Videos
  • POLYNOMIALS

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|32 Videos

Similar Questions

Explore conceptually related problems

simplify ((3125)/(243))^(-(4)/(5))

Simplify (i) ((81)/(49))^(-(3)/(2)) (ii) (14641)^(0.25) (iii) ((32)/(243))^(-(4)/(5)) (iv) ((7776)/(243))^(-(3)/(5))

(32/243)^(3//5) = ?

The value of ((32)/(243))^(-4/5) is a.(4)/(9) b.(9)/(4) c.(16)/(81) d.(81)/(16)

Find the value of the following: (1) ((32)/(243))^((4)/(5)), ((25)/(49))^((7)/(2))

Simplify :((25)^((3)/(2))x(243)^((3)/(5)))/((16)^((5)/(4))x(8)^((4)/(3)))

Value of ((1024)/(243))^((3)/(5)) is _____

Simplify : (i) ((243)/(32))^((4)/(5)) (ii) root(3)((343)^(-2))

(5sqrt((3125)/(243)))^(-1)= _____