Home
Class 9
MATHS
Simpilfy (2sqrt(5) + 3sqrt(2))^(2)...

Simpilfy `(2sqrt(5) + 3sqrt(2))^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify \((2\sqrt{5} + 3\sqrt{2})^{2}\), we can follow these steps: ### Step 1: Identify the expression We have the expression \((A + B)^{2}\) where: - \(A = 2\sqrt{5}\) - \(B = 3\sqrt{2}\) ### Step 2: Use the formula for squaring a binomial The formula for squaring a binomial is: \[ (A + B)^{2} = A^{2} + 2AB + B^{2} \] ### Step 3: Calculate \(A^{2}\) Now, we calculate \(A^{2}\): \[ A^{2} = (2\sqrt{5})^{2} = 2^{2} \cdot (\sqrt{5})^{2} = 4 \cdot 5 = 20 \] ### Step 4: Calculate \(B^{2}\) Next, we calculate \(B^{2}\): \[ B^{2} = (3\sqrt{2})^{2} = 3^{2} \cdot (\sqrt{2})^{2} = 9 \cdot 2 = 18 \] ### Step 5: Calculate \(2AB\) Now, we calculate \(2AB\): \[ 2AB = 2 \cdot (2\sqrt{5}) \cdot (3\sqrt{2}) = 2 \cdot 2 \cdot 3 \cdot \sqrt{5} \cdot \sqrt{2} = 12\sqrt{10} \] ### Step 6: Combine all parts Now we combine all the parts together: \[ (2\sqrt{5} + 3\sqrt{2})^{2} = A^{2} + 2AB + B^{2} = 20 + 12\sqrt{10} + 18 \] ### Step 7: Simplify the expression Finally, we simplify the expression: \[ 20 + 18 + 12\sqrt{10} = 38 + 12\sqrt{10} \] ### Final Answer Thus, the simplified form of \((2\sqrt{5} + 3\sqrt{2})^{2}\) is: \[ \boxed{38 + 12\sqrt{10}} \]
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEMS

    RS AGGARWAL|Exercise MATCHING OF COLUMNS|2 Videos
  • MEAN , MEDIAN AND MODE OF UNGROUPED DATA

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|18 Videos
  • POLYNOMIALS

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|32 Videos

Similar Questions

Explore conceptually related problems

Simplify: (2)/(sqrt(5)+sqrt(3))+(1)/(sqrt(3)+sqrt(2))-(3)/(sqrt(5)+sqrt(2))

Simplify ((sqrt(5)-sqrt(3))(sqrt(5)+sqrt(3)))/((sqrt(5)+2)+(2-sqrt(5)))

(iii) simplify (2)/(sqrt(5)+sqrt(3))+(1)/(sqrt(3)+sqrt(2))-(3)/(sqrt(5)+sqrt(2))

Simplify: (3sqrt(2)-2sqrt(2))/(3sqrt(2)+2sqrt(3))+(sqrt(12))/(sqrt(3)-sqrt(2)) (ii) (sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3))+(sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(3))

Rationales the denominator and simplify: (sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) (ii) (5+2sqrt(3))/(7+4sqrt(3)) (iii) (1+sqrt(2))/(3-2sqrt(2)) (2sqrt(6)-sqrt(5))/(3sqrt(5)-2sqrt(6)) (v) (4sqrt(3)+5sqrt(2))/(sqrt(48)+sqrt(18)) (vi) (2sqrt(3)-sqrt(5))/(2sqrt(3)+3sqrt(3))

Rationalize the denominator of (2sqrt(5)+3sqrt(2))/(2sqrt(5)-3sqrt(2))

Simplify : (5+sqrt(5))(5-sqrt(5)) (ii) (3+2sqrt(2))(3-2sqrt(2))

Simplify: (5+sqrt(5))(5-sqrt(5))( ii) (3+2sqrt(2))(3-2sqrt(2))

Rationales the denominator and simplify: (1+sqrt(2))/(3-2sqrt(2))( ii) (2sqrt(6)-sqrt(5))/(3sqrt(5)-2sqrt(6))

The radius of the circle passing through the points (1, 2), (5, 2) and (5, -2) is : (A) 5sqrt(2) (B) 2sqrt(5) (C) 3sqrt(2) (D) 2sqrt(2)