Home
Class 9
MATHS
Evaluate (2^(n)+ 2^(n-1))/(2^(n+1) - 2^(...

Evaluate `(2^(n)+ 2^(n-1))/(2^(n+1) - 2^(n))`

A

`(1)/(2)`

B

`(2)/(3)`

C

`(3)/(2)`

D

`(4)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \((2^n + 2^{n-1}) / (2^{n+1} - 2^n)\), we can follow these steps: ### Step 1: Rewrite the expression We start with the original expression: \[ \frac{2^n + 2^{n-1}}{2^{n+1} - 2^n} \] ### Step 2: Factor out common terms in the numerator In the numerator, we can factor out \(2^{n-1}\): \[ 2^n + 2^{n-1} = 2^{n-1}(2 + 1) = 2^{n-1} \cdot 3 \] So the numerator becomes: \[ 2^{n-1} \cdot 3 \] ### Step 3: Factor out common terms in the denominator In the denominator, we can factor out \(2^n\): \[ 2^{n+1} - 2^n = 2^n(2 - 1) = 2^n \cdot 1 \] So the denominator simplifies to: \[ 2^n \] ### Step 4: Rewrite the expression with factored terms Now we can rewrite the entire expression: \[ \frac{2^{n-1} \cdot 3}{2^n} \] ### Step 5: Simplify the expression Now we can simplify the expression by canceling \(2^{n-1}\) in the numerator with \(2^n\) in the denominator: \[ \frac{3}{2^{n - (n-1)}} = \frac{3}{2^1} = \frac{3}{2} \] ### Final Answer Thus, the evaluated expression is: \[ \frac{3}{2} \] ---
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEMS

    RS AGGARWAL|Exercise MATCHING OF COLUMNS|2 Videos
  • MEAN , MEDIAN AND MODE OF UNGROUPED DATA

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|18 Videos
  • POLYNOMIALS

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|32 Videos

Similar Questions

Explore conceptually related problems

Find the value of ((2^(n)+2^(n-1))/(2^(n+1)-2^(n)))

Evaluate : (a^(2n+1) xx a^((2n+1)(2n-1)))/(a^(n(4n-1)) xx (a^2)^(2n+3)

Divide x^(2n)+a^(2^(n-1))x^(2^(n-1))+a^(2^(n))byx^(2^(n-1))-a^(2^(n-2))x^(2^(n-2))+a^(2^(n-1))

Evaluate : sum_(n=1)^(15) (2n+1)2^n .

Evaluate sum_(n=1)^n (n^2+n-1)/((n+2)!) .

Evaluate lim_(n rarr oo)n[(1)/((n+1)(n+2))+(1)/((n+2)(n+4))++(1)/(6n^(2))]

Evaluate: lim_(n rarr oo)[(1)/((n+1)^(2))+(1)/((n+2)^(2))+...+(1)/((2n)^(2))]

The value of (n+2).^(n)C_(0).2^(n+1)-(n+1).^(n)C_(1).2^(n)+(n).^(n)C_(2).2^(n-1)-….." to " (n+1) terms is equal to

Evaluate: lim_(n rarr oo)n^(-n^(2)){(n+2^(0))n+2^(-1))(n+2^(-2))(n+2^(-n+1))}^(n)

Find the value of (-1)^(n)+(-1)^(2n)+(-1)^(2n_1)+(-1)^(4n+2) , where n is any positive and integer.