Home
Class 9
MATHS
Simplify [{(256)^(-(1)/(2))}^(-(1)/(4))]...

Simplify `[{(256)^(-(1)/(2))}^(-(1)/(4))]^(2)`

A

3

B

4

C

5

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \(\left[ (256)^{-\frac{1}{2}} \right]^{-\frac{1}{4}}^2\), we will follow these steps: ### Step 1: Rewrite 256 as a power of 2 First, we express 256 in terms of base 2: \[ 256 = 2^8 \] So we can rewrite the expression as: \[ \left[ (2^8)^{-\frac{1}{2}} \right]^{-\frac{1}{4}}^2 \] ### Step 2: Apply the power of a power property Using the property of exponents \((a^m)^n = a^{m \cdot n}\), we simplify: \[ (2^8)^{-\frac{1}{2}} = 2^{8 \cdot -\frac{1}{2}} = 2^{-4} \] Now our expression becomes: \[ \left[ 2^{-4} \right]^{-\frac{1}{4}}^2 \] ### Step 3: Simplify the exponent Again applying the power of a power property: \[ \left[ 2^{-4} \right]^{-\frac{1}{4}} = 2^{-4 \cdot -\frac{1}{4}} = 2^{1} \] Now we have: \[ (2^1)^2 \] ### Step 4: Final simplification Now we apply the power of a power property one last time: \[ (2^1)^2 = 2^{1 \cdot 2} = 2^2 \] Calculating \(2^2\): \[ 2^2 = 4 \] ### Final Answer Thus, the simplified expression is: \[ \boxed{4} \]
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEMS

    RS AGGARWAL|Exercise MATCHING OF COLUMNS|2 Videos
  • MEAN , MEDIAN AND MODE OF UNGROUPED DATA

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|18 Videos
  • POLYNOMIALS

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|32 Videos

Similar Questions

Explore conceptually related problems

Simplify: (256)^(-(4)((-3)/(2)))

Simplify (256)^(3//4) .

Simplify {p^(2)-p+(1)/(4)}-:{p-(1)/(2)}

Simplify: [{((-1)/4)^2}^(-2)]^(-1)

Simplify : (1)sqrt((256)^((1)/(4)))(2)(1)/(4)(128)^((1)/(3))

Simplify: {(1/2)^(-1)x\ (-4)^(-1)}^(-1)

Simplify : ((1)/(2)x(1)/(4))+((1)/(2)x6)

Simplify: (7)^(2)-: (7^((1)/(2)))^(4)

Simplify : (1/4)^(-2)+\ (1/2)^(-2)+(1/3)^(-2)