Home
Class 12
MATHS
The function f(x) ={{:(e^(2x)-1,","x lt ...

The function `f(x) ={{:(e^(2x)-1,","x lt 0),(ax+(bx^2)/2-,","xlt0):}` continuous and differentiable for

A

`a=1,b=2`

B

`a=2,b=1`

C

`a=2`, any b

D

any `a,b=4`

Text Solution

AI Generated Solution

The correct Answer is:
To find the values of \( a \) and \( b \) for the function \[ f(x) = \begin{cases} e^{2x} - 1 & \text{if } x < 0 \\ ax + \frac{bx^2}{2} & \text{if } x \geq 0 \end{cases} \] such that \( f(x) \) is continuous and differentiable, we will follow these steps: ### Step 1: Ensure Continuity at \( x = 0 \) For \( f(x) \) to be continuous at \( x = 0 \), we need: \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^+} f(x) \] Calculating \( \lim_{x \to 0^-} f(x) \): \[ \lim_{x \to 0^-} f(x) = e^{2 \cdot 0} - 1 = 1 - 1 = 0 \] Calculating \( \lim_{x \to 0^+} f(x) \): \[ \lim_{x \to 0^+} f(x) = a \cdot 0 + \frac{b \cdot 0^2}{2} = 0 \] Setting these equal for continuity: \[ 0 = 0 \] This condition is satisfied for any \( a \) and \( b \). ### Step 2: Ensure Differentiability at \( x = 0 \) For \( f(x) \) to be differentiable at \( x = 0 \), we need: \[ \lim_{x \to 0^-} f'(x) = \lim_{x \to 0^+} f'(x) \] Calculating \( f'(x) \) for \( x < 0 \): \[ f'(x) = \frac{d}{dx}(e^{2x} - 1) = 2e^{2x} \] Thus, \[ \lim_{x \to 0^-} f'(x) = 2e^{2 \cdot 0} = 2 \cdot 1 = 2 \] Calculating \( f'(x) \) for \( x \geq 0 \): \[ f'(x) = \frac{d}{dx}\left(ax + \frac{bx^2}{2}\right) = a + bx \] Thus, \[ \lim_{x \to 0^+} f'(x) = a + b \cdot 0 = a \] Setting these equal for differentiability: \[ 2 = a \] ### Step 3: Conclusion about \( b \) Since the continuity condition did not impose any restrictions on \( b \), \( b \) can take any real value. Therefore, we conclude: \[ a = 2 \quad \text{and} \quad b \in \mathbb{R} \] ### Final Answer: \[ a = 2, \quad b \text{ can be any real number} \] ---

To find the values of \( a \) and \( b \) for the function \[ f(x) = \begin{cases} e^{2x} - 1 & \text{if } x < 0 \\ ax + \frac{bx^2}{2} & \text{if } x \geq 0 \end{cases} ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 DERIVATIVE OF COMPOSITE FUNCTION (BY CHAIN RULE )|30 Videos
  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 DERIVATIVE OF INVERSE TRIGONOMETRIC FUNCTIONS (BY SUBSTITUTION)|18 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos

Similar Questions

Explore conceptually related problems

The function f(x)=xsqrt(ax-x^2), a lt 0

If f(x)={{:(e^(2x^(2)+x),":",xgt0),(ax+b,":",xle0):} is differentiable at x=0 , then

If f(x)={(x-1",",xlt0),(1/4",",x=0),(x^2",",xgt0):} , then

If f(x) = {{:( e^(x) +ax ,"for " x lt 0 ),( b(x-1) ^(2) ,"for " xge 0):}, is differentiable at x =0,then (a,b) is

Let a and b are real numbers such that the function f(x)={(-3ax^(2)-2, xlt1),(bx+a^(2),xge1):} is differentiable of all xepsilonR , then

Find 'a' and 'b', if the function given by: f(x)={{:(ax^(2)+b", if "xlt1),(2x+1", if "xge1):} is differentiable at x = 1.

For what value of k is the function f(x)={{:(2x+(1)/(4),xlt0),(k,x=0),((x+(1)/(2))^(2),xgt0):} continuous?

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-DIFFERENTIATION -MHT CET CORER
  1. The function f(x) ={{:(e^(2x)-1,","x lt 0),(ax+(bx^2)/2-,","xlt0):} co...

    Text Solution

    |

  2. Derivative of log (sec theta + tan theta ) with respect to sec theta...

    Text Solution

    |

  3. If y = e^(m sin^(-1) x) and (1-x^(2)) ((dy)/(dx))^(2) = Ay^(2) , then...

    Text Solution

    |

  4. If log (10) ((x^(2) - y^(2))/(x^(2) + y^(2))) = 2 , " then" (dy)/(dx)...

    Text Solution

    |

  5. Derivative of tan^(-1)((x)/(sqrt( 1 - x^(2)))) with respect to ...

    Text Solution

    |

  6. If tan x = (2t)/(1 -t^(2)) " and sin y" = (2t)/(1 + t^(2)) , then the...

    Text Solution

    |

  7. If x^(p) + y^(q) = (x + y)^(p+q) , " then" (dy)/(dx) is

    Text Solution

    |

  8. At the point x = 1 , then function f(x) = {{:(x^(3) - 1, 1lt x lt o...

    Text Solution

    |

  9. If x^(p) y^(q) = (x + y)^((p + q)) " then " (dy)/(dx)= ?

    Text Solution

    |

  10. If x = 2 cos t - cos 2t , y = 2 sin t - sin 2t, then the value of ...

    Text Solution

    |

  11. y=logtan(x/2)+sin^(-1)(cosx), then dy/dx is

    Text Solution

    |

  12. If x^(2) y^(5) = (x + y)^(7) , " then " (d^(2)y)/(dx^(2)) is equal to

    Text Solution

    |

  13. The equation of tangent to the curve given by x = 3 cos theta , y ...

    Text Solution

    |

  14. Differentiate (logx)^x with respect to logx .

    Text Solution

    |

  15. If x sec theta , y = tan theta , then the value of (d^(2) y)/(dx^(...

    Text Solution

    |

  16. If x=f(t) and y=g(t) , then write the value of (d^2y)/(dx^2) .

    Text Solution

    |

  17. Find (dy)/(dx) , " if x " = 2 cos theta - cos 2 theta and y = 2sin...

    Text Solution

    |

  18. find the derivative of e^(x) + e^(y) = e^(x +y)

    Text Solution

    |

  19. If xy = tan^(-1) (xy) + cot^(-1) (xy), " then" (dy)/(dx) is equal to

    Text Solution

    |

  20. The derivative of cos^(3)x w.r.t. sin^(3)x is

    Text Solution

    |

  21. The derivative of log|x| is

    Text Solution

    |