Home
Class 12
MATHS
If y = log ((cos x)/(1 - sin x)), "then...

If ` y = log ((cos x)/(1 - sin x)), "then " (dy)/(dx)` is equal to

A

tanx

B

cosec x

C

cos x

D

sec x

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \log\left(\frac{\cos x}{1 - \sin x}\right) \), we will use the properties of logarithms and differentiation. Here’s the step-by-step solution: ### Step 1: Rewrite the function using logarithm properties We can use the property of logarithms that states \( \log\left(\frac{a}{b}\right) = \log a - \log b \). Therefore, we can rewrite \( y \) as: \[ y = \log(\cos x) - \log(1 - \sin x) \] ### Step 2: Differentiate using the chain rule Now, we will differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{d}{dx}[\log(\cos x)] - \frac{d}{dx}[\log(1 - \sin x)] \] ### Step 3: Apply the derivative of logarithm The derivative of \( \log(u) \) is \( \frac{1}{u} \cdot \frac{du}{dx} \). We will apply this to both terms: 1. For \( \log(\cos x) \): \[ \frac{d}{dx}[\log(\cos x)] = \frac{1}{\cos x} \cdot (-\sin x) = -\frac{\sin x}{\cos x} \] 2. For \( \log(1 - \sin x) \): \[ \frac{d}{dx}[\log(1 - \sin x)] = \frac{1}{1 - \sin x} \cdot (-\cos x) = -\frac{\cos x}{1 - \sin x} \] ### Step 4: Combine the derivatives Now, we can combine the results from Step 3: \[ \frac{dy}{dx} = -\frac{\sin x}{\cos x} + \frac{\cos x}{1 - \sin x} \] ### Step 5: Simplify the expression To combine these fractions, we need a common denominator, which is \( \cos x(1 - \sin x) \): \[ \frac{dy}{dx} = -\frac{\sin x(1 - \sin x)}{\cos x(1 - \sin x)} + \frac{\cos^2 x}{\cos x(1 - \sin x)} \] \[ = \frac{-\sin x + \sin^2 x + \cos^2 x}{\cos x(1 - \sin x)} \] ### Step 6: Use the Pythagorean identity Using the identity \( \sin^2 x + \cos^2 x = 1 \): \[ \frac{dy}{dx} = \frac{-\sin x + 1}{\cos x(1 - \sin x)} = \frac{1 - \sin x}{\cos x(1 - \sin x)} \] ### Step 7: Cancel the common terms The \( 1 - \sin x \) terms cancel out: \[ \frac{dy}{dx} = \frac{1}{\cos x} \] ### Step 8: Final result Since \( \frac{1}{\cos x} = \sec x \), we can write the final answer as: \[ \frac{dy}{dx} = \sec x \]

To find the derivative of the function \( y = \log\left(\frac{\cos x}{1 - \sin x}\right) \), we will use the properties of logarithms and differentiation. Here’s the step-by-step solution: ### Step 1: Rewrite the function using logarithm properties We can use the property of logarithms that states \( \log\left(\frac{a}{b}\right) = \log a - \log b \). Therefore, we can rewrite \( y \) as: \[ y = \log(\cos x) - \log(1 - \sin x) \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 DERIVATIVE OF INVERSE TRIGONOMETRIC FUNCTIONS (BY SUBSTITUTION)|18 Videos
  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 ( DERIVATIVE OF FUNCTION WITH RESPECT TO ANOTHER FUNCTION )|10 Videos
  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET CORER|35 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos

Similar Questions

Explore conceptually related problems

If y = log_(cos x) sin x " then" (dy)/(dx) is equal to

y=log ((1-sin x )/(1+sin x )),then (dy)/(dx) =

If y=log((sin x)/(1+cos x)),"then "(dy)/(dx)

If y=e^(tan x(ln sin x)) then (dy)/(dx) is equal to

If y + sin y = cos x, then (dy)/(dx) is equal to

If y=log_(sin x)cos x, then (dy)/(dx) is equal to

If y=log (xcos x -sin x ),then (dy)/(dx)

If (cos x)^(y)=(sin y)^(x), then (dy)/(dx) equals-

y=log tan((x)/(2))+sin^(-1)(cos x), then (dy)/(dx) is

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-DIFFERENTIATION -EXERCISE 1 DERIVATIVE OF COMPOSITE FUNCTION (BY CHAIN RULE )
  1. If y=e^x.e^(x^2).e^(x^3).......e^(x^n).... for 0<x<1 then (dy)/(dx) at...

    Text Solution

    |

  2. The derivative of tan (x^(@) + 45^(@)) , is

    Text Solution

    |

  3. If y = log ((cos x)/(1 - sin x)), "then " (dy)/(dx) is equal to

    Text Solution

    |

  4. If y= log (sqrt(x - 1)) - sqrt(x + 1)) ,"then " (dy)/(dx) is equal t...

    Text Solution

    |

  5. The derivative of f(x) = e^(e^(x^(2))) is

    Text Solution

    |

  6. If y= log [x + sqrt(9 + x^(2))], "then" (dy)/(dx) is equal to

    Text Solution

    |

  7. If y =sqrt(x) + (1)/(sqrt(x)) , "then" 2 x . (dy)/(dx) is equal to

    Text Solution

    |

  8. Derivative of 2sqrt(cot(x^(2))) with respect to x is

    Text Solution

    |

  9. Derivative of sqrt( tan sqrt(x)) with respect to x is

    Text Solution

    |

  10. If f(x)=sqrt(1+cos^2(x^2)),t h e nf^(prime)((sqrt(pi))/2) is

    Text Solution

    |

  11. If y = sqrt(sin + y ) "then" (dy)/(dx) is equal to

    Text Solution

    |

  12. The differential coefficient of sin (cos (x^(2))) with respect to s i...

    Text Solution

    |

  13. If y=sqrt(x(log)e x) , then find (dy)/(dx) at x=e .

    Text Solution

    |

  14. If y= ( cos x ^(2))^(2) , "then" (dy)/(dx) is equal to

    Text Solution

    |

  15. If y=cos(sinx^2) then at x=sqrt(pi/2), (dy)/(dx)=

    Text Solution

    |

  16. Derivative of log[log(log x^(5))] with respect to x is

    Text Solution

    |

  17. If f(x) = log(x^(2)) (log(e) x) "then f' (x) at x= e" is

    Text Solution

    |

  18. If y = log(2) log(2) (x) , " then " (dy)/(dx) is equal to

    Text Solution

    |

  19. If x=(1-sqrt(y))/(1+sqrt(y)) then (dy)/(dx) is equal to

    Text Solution

    |

  20. If y = log (sin (x^(2))), 0 lt x lt (pi)/(2), "then " (dy)/(dx) "at ...

    Text Solution

    |