Home
Class 12
MATHS
Derivative of sqrt( tan sqrt(x)) with r...

Derivative of ` sqrt( tan sqrt(x))` with respect to x is

A

`(sec^(2) sqrt(x))/(4sqrt(x)sqrttansqrt(x))`

B

`(sec^(2) sqrt(x))/(4sqrt(x)tansqrt(x))`

C

`(sec^(2) sqrt(x))/(sqrt(x)sqrttansqrt(x))`

D

`(4sec^(2) sqrt(x))/(sqrt(x)sqrttansqrt(x))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of \( y = \sqrt{\tan(\sqrt{x})} \) with respect to \( x \), we will use the chain rule and the derivative formulas for trigonometric and square root functions. ### Step-by-Step Solution: 1. **Rewrite the function**: \[ y = (\tan(\sqrt{x}))^{1/2} \] 2. **Differentiate using the chain rule**: Using the chain rule, we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{1}{2} (\tan(\sqrt{x}))^{-1/2} \cdot \frac{d}{dx}[\tan(\sqrt{x})] \] 3. **Differentiate \( \tan(\sqrt{x}) \)**: To differentiate \( \tan(\sqrt{x}) \), we again use the chain rule: \[ \frac{d}{dx}[\tan(\sqrt{x})] = \sec^2(\sqrt{x}) \cdot \frac{d}{dx}[\sqrt{x}] \] 4. **Differentiate \( \sqrt{x} \)**: The derivative of \( \sqrt{x} \) is: \[ \frac{d}{dx}[\sqrt{x}] = \frac{1}{2\sqrt{x}} \] 5. **Combine the derivatives**: Now, substituting back, we have: \[ \frac{d}{dx}[\tan(\sqrt{x})] = \sec^2(\sqrt{x}) \cdot \frac{1}{2\sqrt{x}} \] 6. **Substitute back into the derivative of \( y \)**: Now substituting this back into our expression for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{1}{2} (\tan(\sqrt{x}))^{-1/2} \cdot \left(\sec^2(\sqrt{x}) \cdot \frac{1}{2\sqrt{x}}\right) \] 7. **Simplify the expression**: Thus, we can simplify: \[ \frac{dy}{dx} = \frac{1}{4\sqrt{x}} (\tan(\sqrt{x}))^{-1/2} \sec^2(\sqrt{x}) \] ### Final Answer: The derivative of \( \sqrt{\tan(\sqrt{x})} \) with respect to \( x \) is: \[ \frac{dy}{dx} = \frac{\sec^2(\sqrt{x})}{4\sqrt{x} \sqrt{\tan(\sqrt{x})}} \]

To find the derivative of \( y = \sqrt{\tan(\sqrt{x})} \) with respect to \( x \), we will use the chain rule and the derivative formulas for trigonometric and square root functions. ### Step-by-Step Solution: 1. **Rewrite the function**: \[ y = (\tan(\sqrt{x}))^{1/2} \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 DERIVATIVE OF INVERSE TRIGONOMETRIC FUNCTIONS (BY SUBSTITUTION)|18 Videos
  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 ( DERIVATIVE OF FUNCTION WITH RESPECT TO ANOTHER FUNCTION )|10 Videos
  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET CORER|35 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos

Similar Questions

Explore conceptually related problems

Find the derivative of sqrt(cos x) with respect to x using first principle

The derivative of sqrt(sqrt(x)+1) is

Knowledge Check

  • The derivative of sqrt(secsqrt(x)) with respect to x , is :

    A
    `(1)/(4sqrt(x))secsqrt(x)tansqrt(x)`
    B
    `(1)/(4sqrt(x))sqrt(secsqrt(x))sinx`
    C
    `(1)/(4sqrt(sqrt(x)))(secsqrt(x))^(3//2)sinsqrt(x)`
    D
    `(1)/(4sqrt(x))secsqrt(x)sinsqrt(x)`
  • Derivative of sqrte^(sqrt(x)) with respect to x is

    A
    ` (sqrte^(sqrt(x)))/(2sqrt(xe)^sqrt(x))`
    B
    ` (4e^(sqrt(x)))/(sqrt(xe)^sqrt(x))`
    C
    ` (e^(sqrt(x)))/(4sqrt(xe)^sqrt(x))`
    D
    ` (e^(sqrt(x)))/(sqrt(e)^sqrt(x))`
  • Derivative of sqrt(e^(sqrtx)) with respect to x is

    A
    `(e^(sqrtx))/(2sqrt(xe^(sqrtx)))`
    B
    `(4e^(sqrtx))/(sqrt(xe^(sqrtx)))`
    C
    `(e^(sqrtx))/(4sqrt(xe^(sqrtx)))`
    D
    `(e^(sqrtx))/(sqrt(e^(sqrtx)))`
  • Similar Questions

    Explore conceptually related problems

    Find the derivative of (6"log"x-sqrt(x)-7) with respect to 'x'

    Differentiate e^( tan )^^((-1)sqrt(x)) with respect to x:

    Using a suitable substitution,find the derivative of tan ^(-1)((4sqrt(x))/(1-4x)) with respect to x.

    The derivative of sqrt(e^(sqrt(x))), x gt 0 with respect to x is

    Derivative of 2sqrt(cot(x^(2))) with respect to x is