Home
Class 12
MATHS
(d)/(dx) [ log{e^(x) ((x-2)/(x +2))^(3//...

`(d)/(dx) [ log{e^(x) ((x-2)/(x +2))^(3//4)}]` is equal to

A

1

B

`(x^(2) +1)/(x^(2) -4)`

C

`(x^(2) -1)/(x^(2) -4)`

D

`e^(x) (x^(2) -1)/(x^(2) -4)`

Text Solution

Verified by Experts

The correct Answer is:
C

Let ` y = log{e^(x)((x-2)/(x +2))^(3//4)}= loge^(4) + log((x-2)/(x+2))^(3//4)`
` rArr y =x + (3)/(4) [log(x-2) - log(x + 2)]`
On differentiating both sides w.r.t.x., we get
`(dy)/(dx) = 1 + (3)/(4) [(1)/(x-2) -(1)/(x+2)]=1+(3)/((x^(2) -4)) rArr (dy)/(dx) = (x^(2) -1)/(x^(2) -4)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 DERIVATIVE OF INVERSE TRIGONOMETRIC FUNCTIONS (BY SUBSTITUTION)|18 Videos
  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 ( DERIVATIVE OF FUNCTION WITH RESPECT TO ANOTHER FUNCTION )|10 Videos
  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET CORER|35 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos

Similar Questions

Explore conceptually related problems

(d)/(dx)[log{e^(x)((x-2)/(x+2))^(3/4)}] equals (x^(2)-1)/(x^(2)-4) (b) 1 (c) (x^(2)+1)/(x^(2)-4) (d) e^(x)(x^(2)-1)/(x^(2)-4)

(d)/(dx)(log e^(x)*log x)

Knowledge Check

  • d/dx[log{e^x((x-2)/(x+2))^(8//4)}] is equal to

    A
    1
    B
    `(x^2+1)/(x^2-4)`
    C
    `(x^2-1)/(x^2-4)`
    D
    `e^x.(x^2-1)/(x^2-4)`
  • (d)/(dx)[log((e^(4x))/(1+e^(4x)))]

    A
    `(-1)/(1+e^(4x))`
    B
    `(2)/(1+e^(4x))`
    C
    `(-3)/(1+e^(4x))`
    D
    `(4)/(1+e^(4x))`
  • (d)/(dx)[log((x)/(e^(cotx)))]=

    A
    `1-csc^(2)x`
    B
    `-1-csc^(2)x`
    C
    `x^(-1)-csc^(2)x`
    D
    `x^(-1)+csc^(2)x`
  • Similar Questions

    Explore conceptually related problems

    (d)/(dx)(sin x log x)

    (d)/(dx)[log(cos h(2x))]=

    (d)/(dx)(log*sin x)

    (d)/(dx)(log tan x)

    (d)/(dx)[log(sec x+tan x)]=