Home
Class 12
MATHS
If y = sin^(-1) ((1 -x^(2))/(1 +x^(2)))...

If ` y = sin^(-1) ((1 -x^(2))/(1 +x^(2))),0 lt x lt 1 " then " (dy)/(dx) ` is equal to

A

`(-1)/(1 + x^(2))`

B

`(-2)/(1 + x^(2))`

C

`(1)/(1 + x^(2))`

D

`(2)/(1 + x^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( \frac{dy}{dx} \) for the given function \( y = \sin^{-1} \left( \frac{1 - x^2}{1 + x^2} \right) \), we can follow these steps: ### Step 1: Substitute \( x \) with \( \tan(\theta) \) Let \( x = \tan(\theta) \). Then, \( \theta = \tan^{-1}(x) \). The range of \( x \) from \( 0 \) to \( 1 \) corresponds to \( \theta \) ranging from \( 0 \) to \( \frac{\pi}{4} \). ### Step 2: Rewrite \( y \) in terms of \( \theta \) Substituting \( x \) into the function, we have: \[ y = \sin^{-1} \left( \frac{1 - \tan^2(\theta)}{1 + \tan^2(\theta)} \right) \] Using the identity \( \frac{1 - \tan^2(\theta)}{1 + \tan^2(\theta)} = \cos(2\theta) \), we can rewrite \( y \): \[ y = \sin^{-1}(\cos(2\theta)) \] ### Step 3: Use the co-function identity Using the identity \( \sin^{-1}(x) + \cos^{-1}(x) = \frac{\pi}{2} \), we can express \( y \) as: \[ y = \frac{\pi}{2} - 2\theta \] ### Step 4: Differentiate \( y \) with respect to \( x \) Now, we need to differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{d}{dx} \left( \frac{\pi}{2} - 2\theta \right) \] Since \( \frac{\pi}{2} \) is a constant, its derivative is \( 0 \). Thus: \[ \frac{dy}{dx} = -2 \frac{d\theta}{dx} \] ### Step 5: Find \( \frac{d\theta}{dx} \) Using the derivative of \( \theta = \tan^{-1}(x) \): \[ \frac{d\theta}{dx} = \frac{1}{1 + x^2} \] Substituting this back, we have: \[ \frac{dy}{dx} = -2 \cdot \frac{1}{1 + x^2} \] ### Final Result Thus, the derivative is: \[ \frac{dy}{dx} = -\frac{2}{1 + x^2} \]

To find the derivative \( \frac{dy}{dx} \) for the given function \( y = \sin^{-1} \left( \frac{1 - x^2}{1 + x^2} \right) \), we can follow these steps: ### Step 1: Substitute \( x \) with \( \tan(\theta) \) Let \( x = \tan(\theta) \). Then, \( \theta = \tan^{-1}(x) \). The range of \( x \) from \( 0 \) to \( 1 \) corresponds to \( \theta \) ranging from \( 0 \) to \( \frac{\pi}{4} \). ### Step 2: Rewrite \( y \) in terms of \( \theta \) Substituting \( x \) into the function, we have: \[ ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 ( DERIVATIVE OF FUNCTION WITH RESPECT TO ANOTHER FUNCTION )|10 Videos
  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 (LOGARITHMIC DIFFERENTIATION )|17 Videos
  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 DERIVATIVE OF COMPOSITE FUNCTION (BY CHAIN RULE )|30 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos

Similar Questions

Explore conceptually related problems

y = cos ^(-1)((1 - x^(2))/(1+ x^(2))) 0 lt x lt 1

If y = cos^(-1) ((2x)/(1 + x^(2))), - 1 lt x lt 1 " then " (dy)/(dx) is equal to

y = cos ^(-1)((2x)/(1 +x^(2))),-1 lt x lt1

If sin^(2) x + cos^(2) y = 1 , " then " (dy)/(dx) is equal to

If -1 lt x lt 0 , then cos^(-1) x is equal to

If y=sec^(-1)(sqrt(1+x^(2))) , when -1 lt x lt 1, then find (dy)/(dx)

y = sec^(-1)((1)/(2x^(2) -1 )), 0 lt x lt (1)/(sqrt(2))

y = sin ^(-1)(2xsqrt(1 - x^(2))),-(1)/sqrt(2) lt x lt (1)/sqrt(2)

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-DIFFERENTIATION -EXERCISE 1 DERIVATIVE OF INVERSE TRIGONOMETRIC FUNCTIONS (BY SUBSTITUTION)
  1. If y = sin^(-1) ((2x)/(1 + x^(2))), "then" (dy)/(dx) is equal to

    Text Solution

    |

  2. If -(1)/sqrt(3) lt x lt (1)/sqrt(3), then tan^(-1) (3x-x^(3))/(1-3x^(...

    Text Solution

    |

  3. If y = sin^(-1) ((1 -x^(2))/(1 +x^(2))),0 lt x lt 1 " then " (dy)/(dx...

    Text Solution

    |

  4. Prove that : cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(...

    Text Solution

    |

  5. Differentiate the functions with respect to x : cos^(-1){(cosx+sinx)/...

    Text Solution

    |

  6. Derivative of sin^(-1) ((1)/(sqrt(x + 1))) with respect to x is

    Text Solution

    |

  7. If sin^(-1)x+sin^(-1)y=pi/2, then dy/dx is equal to

    Text Solution

    |

  8. (d)/(dx)[sin^(-1)(xsqrt(1 - x)- sqrt(x)sqrt(1 - x^(2)))] is equal to

    Text Solution

    |

  9. If y = cos^(-1) ((2x)/(1 + x^(2))), - 1 lt x lt 1 " then " (dy)/(dx)...

    Text Solution

    |

  10. If y = sin^(-1) x + sin^(-1) sqrt(1 - x^(2)), - 1 le x le 1," then " ...

    Text Solution

    |

  11. If y = tan^(-1) (sec x - tan x ) , "then" (dy)/(dx) is equal to

    Text Solution

    |

  12. d/(dx)[sin^2cot^(- 1)sqrt((1-x)/(1+x))] is

    Text Solution

    |

  13. If y = tan^(-1) x + cot^(-1) x + sec^(-1) + "cosec"^(-1) x . "then" (...

    Text Solution

    |

  14. If y = sin^(-1) sqrt(1-x), "then " (dy)/(dx) is equal to

    Text Solution

    |

  15. If y = tan^(-1)((cos x)/(1 + sin x)), "then" (dy)/(dx) is equal to

    Text Solution

    |

  16. If y = sin[cos^(-1){sin(cos^(-1) x)}], "then" (dy)/(dx)" at x" = (1)/...

    Text Solution

    |

  17. If y = tan^(-1) sqrt((1-sinx)/(1+sinx)), then the value of (dy)/(dx...

    Text Solution

    |

  18. The derivative of tan^(-1)((sqrt(1 + x)-sqrt(1-x))/(sqrt(1 + x)+sqrt(1...

    Text Solution

    |