Home
Class 12
MATHS
Derivative of sin^(-1) ((1)/(sqrt(x + 1)...

Derivative of `sin^(-1) ((1)/(sqrt(x + 1)))` with respect to x is

A

`(1)/(sqrt(x)(1 + x))`

B

`(-2)/(sqrt(x)(1 +x))`

C

` (-1)/(2sqrt(x)(1 +x))`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of \( y = \sin^{-1} \left( \frac{1}{\sqrt{x + 1}} \right) \) with respect to \( x \), we can follow these steps: ### Step 1: Rewrite the Function Let \( y = \sin^{-1} \left( \frac{1}{\sqrt{x + 1}} \right) \). ### Step 2: Differentiate using Chain Rule To differentiate \( y \) with respect to \( x \), we will use the chain rule. The derivative of \( \sin^{-1}(u) \) is given by: \[ \frac{dy}{dx} = \frac{1}{\sqrt{1 - u^2}} \cdot \frac{du}{dx} \] where \( u = \frac{1}{\sqrt{x + 1}} \). ### Step 3: Find \( \frac{du}{dx} \) First, we need to differentiate \( u \): \[ u = (x + 1)^{-1/2} \] Using the power rule: \[ \frac{du}{dx} = -\frac{1}{2} (x + 1)^{-3/2} \cdot (1) = -\frac{1}{2\sqrt{(x + 1)^3}} \] ### Step 4: Substitute \( u \) into the Derivative Now we substitute \( u \) back into the derivative: \[ 1 - u^2 = 1 - \left( \frac{1}{\sqrt{x + 1}} \right)^2 = 1 - \frac{1}{x + 1} = \frac{x + 1 - 1}{x + 1} = \frac{x}{x + 1} \] Thus, \[ \sqrt{1 - u^2} = \sqrt{\frac{x}{x + 1}} = \frac{\sqrt{x}}{\sqrt{x + 1}} \] ### Step 5: Combine the Derivatives Now we can write the derivative: \[ \frac{dy}{dx} = \frac{1}{\sqrt{1 - u^2}} \cdot \frac{du}{dx} = \frac{1}{\frac{\sqrt{x}}{\sqrt{x + 1}}} \cdot \left(-\frac{1}{2\sqrt{(x + 1)^3}}\right) \] This simplifies to: \[ \frac{dy}{dx} = -\frac{\sqrt{x + 1}}{2\sqrt{x} \cdot (x + 1)^{3/2}} = -\frac{1}{2\sqrt{x} \cdot (x + 1)} \] ### Final Answer Thus, the derivative of \( y = \sin^{-1} \left( \frac{1}{\sqrt{x + 1}} \right) \) with respect to \( x \) is: \[ \frac{dy}{dx} = -\frac{1}{2\sqrt{x} (x + 1)} \] ---

To find the derivative of \( y = \sin^{-1} \left( \frac{1}{\sqrt{x + 1}} \right) \) with respect to \( x \), we can follow these steps: ### Step 1: Rewrite the Function Let \( y = \sin^{-1} \left( \frac{1}{\sqrt{x + 1}} \right) \). ### Step 2: Differentiate using Chain Rule To differentiate \( y \) with respect to \( x \), we will use the chain rule. The derivative of \( \sin^{-1}(u) \) is given by: \[ ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 ( DERIVATIVE OF FUNCTION WITH RESPECT TO ANOTHER FUNCTION )|10 Videos
  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 (LOGARITHMIC DIFFERENTIATION )|17 Videos
  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 DERIVATIVE OF COMPOSITE FUNCTION (BY CHAIN RULE )|30 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos

Similar Questions

Explore conceptually related problems

Derivative of tan^(-1)((x)/(sqrt( 1 - x^(2)))) with respect to sin^(-1) (3x - 4x^(3)) is

Derivative of sin^(-1)((t)/(sqrt(1+t^(2)))) with respect to cos^(-1)((1)/(sqrt(1+t^(2))) is

The derivative of sin^(-1)((sqrt(1+x)+sqrt(1-x))/(2)) with respect to x is

Derivative of tan ^(-1) ""((x)/(sqrt(1-x^(2)))) with respect sin ^(-1) ( 3x - 4x^(3)) is

The derivative of sin^(-1) (2x sqrt(1-x^(2))) with respect to ltbr. sin^(-1)(3x - 4x^(3)) is

Using a suitable substitution,find the derivative of tan ^(-1)((4sqrt(x))/(1-4x)) with respect to x.

The derivative of tan^(-1) ((2x)/(1-x^(2))) with respect to cos^(-1) sqrt(1 - x^(2)) is

The derivative of y=sin^(-1)((3x+sqrt(16-16x^(2)))/(5)) with respect to x at x=(sqrt(3))/(2) , is

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-DIFFERENTIATION -EXERCISE 1 DERIVATIVE OF INVERSE TRIGONOMETRIC FUNCTIONS (BY SUBSTITUTION)
  1. If y = sin^(-1) ((2x)/(1 + x^(2))), "then" (dy)/(dx) is equal to

    Text Solution

    |

  2. If -(1)/sqrt(3) lt x lt (1)/sqrt(3), then tan^(-1) (3x-x^(3))/(1-3x^(...

    Text Solution

    |

  3. If y = sin^(-1) ((1 -x^(2))/(1 +x^(2))),0 lt x lt 1 " then " (dy)/(dx...

    Text Solution

    |

  4. Prove that : cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(...

    Text Solution

    |

  5. Differentiate the functions with respect to x : cos^(-1){(cosx+sinx)/...

    Text Solution

    |

  6. Derivative of sin^(-1) ((1)/(sqrt(x + 1))) with respect to x is

    Text Solution

    |

  7. If sin^(-1)x+sin^(-1)y=pi/2, then dy/dx is equal to

    Text Solution

    |

  8. (d)/(dx)[sin^(-1)(xsqrt(1 - x)- sqrt(x)sqrt(1 - x^(2)))] is equal to

    Text Solution

    |

  9. If y = cos^(-1) ((2x)/(1 + x^(2))), - 1 lt x lt 1 " then " (dy)/(dx)...

    Text Solution

    |

  10. If y = sin^(-1) x + sin^(-1) sqrt(1 - x^(2)), - 1 le x le 1," then " ...

    Text Solution

    |

  11. If y = tan^(-1) (sec x - tan x ) , "then" (dy)/(dx) is equal to

    Text Solution

    |

  12. d/(dx)[sin^2cot^(- 1)sqrt((1-x)/(1+x))] is

    Text Solution

    |

  13. If y = tan^(-1) x + cot^(-1) x + sec^(-1) + "cosec"^(-1) x . "then" (...

    Text Solution

    |

  14. If y = sin^(-1) sqrt(1-x), "then " (dy)/(dx) is equal to

    Text Solution

    |

  15. If y = tan^(-1)((cos x)/(1 + sin x)), "then" (dy)/(dx) is equal to

    Text Solution

    |

  16. If y = sin[cos^(-1){sin(cos^(-1) x)}], "then" (dy)/(dx)" at x" = (1)/...

    Text Solution

    |

  17. If y = tan^(-1) sqrt((1-sinx)/(1+sinx)), then the value of (dy)/(dx...

    Text Solution

    |

  18. The derivative of tan^(-1)((sqrt(1 + x)-sqrt(1-x))/(sqrt(1 + x)+sqrt(1...

    Text Solution

    |