Home
Class 12
MATHS
(d)/(dx)[sin^(-1)(xsqrt(1 - x)- sqrt(x)s...

`(d)/(dx)[sin^(-1)(xsqrt(1 - x)- sqrt(x)sqrt(1 - x^(2)))]` is equal to

A

`(1)/(2sqrt(x(1 -x)))-(1)/(sqrt(1-x^(2)))`

B

`(1)/(sqrt1-{xsqrt(1-x)-sqrt(x(1-x^(2))}^(2)}^(2))`

C

`(1)/(sqrt(1 -x^(2)))-(1)/(2sqrtx(1-x))`

D

`(1)/(sqrt(x(1-x)(1-x)^(2)))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to differentiate the function given by: \[ y = \sin^{-1}(x \sqrt{1 - x} - \sqrt{x} \sqrt{1 - x^2}) \] ### Step 1: Rewrite the Function First, we can simplify the expression inside the inverse sine function. The expression can be rewritten as: \[ y = \sin^{-1}(x \sqrt{1 - x} - \sqrt{x(1 - x^2)}) \] ### Step 2: Differentiate Using Chain Rule To differentiate \(y\) with respect to \(x\), we will use the chain rule. The derivative of \(\sin^{-1}(u)\) is given by: \[ \frac{dy}{dx} = \frac{1}{\sqrt{1 - u^2}} \cdot \frac{du}{dx} \] where \(u = x \sqrt{1 - x} - \sqrt{x(1 - x^2)}\). ### Step 3: Differentiate \(u\) Now, we need to find \(\frac{du}{dx}\). We differentiate \(u\): \[ u = x \sqrt{1 - x} - \sqrt{x(1 - x^2)} \] Using the product rule and chain rule, we differentiate each term in \(u\). 1. Differentiate \(x \sqrt{1 - x}\): - Let \(v = \sqrt{1 - x}\), then \(\frac{dv}{dx} = -\frac{1}{2\sqrt{1 - x}}\). - By product rule: \[ \frac{d}{dx}(x \sqrt{1 - x}) = \sqrt{1 - x} + x \left(-\frac{1}{2\sqrt{1 - x}}\right) = \sqrt{1 - x} - \frac{x}{2\sqrt{1 - x}} \] 2. Differentiate \(-\sqrt{x(1 - x^2)}\): - Let \(w = \sqrt{x(1 - x^2)}\). - Using the product rule: \[ \frac{d}{dx}(-\sqrt{x(1 - x^2)}) = -\frac{1}{2\sqrt{x(1 - x^2)}} \cdot \left( (1 - x^2) + x(-2x) \right) = -\frac{1 - 3x^2}{2\sqrt{x(1 - x^2)}} \] ### Step 4: Combine Derivatives Now, we combine the derivatives: \[ \frac{du}{dx} = \left(\sqrt{1 - x} - \frac{x}{2\sqrt{1 - x}}\right) - \frac{1 - 3x^2}{2\sqrt{x(1 - x^2)}} \] ### Step 5: Substitute Back into the Derivative of \(y\) Now we substitute \(u\) and \(\frac{du}{dx}\) back into the derivative of \(y\): \[ \frac{dy}{dx} = \frac{1}{\sqrt{1 - (x \sqrt{1 - x} - \sqrt{x(1 - x^2)})^2}} \cdot \frac{du}{dx} \] ### Final Step: Simplify Finally, we simplify the expression to get the final result.

To solve the problem, we need to differentiate the function given by: \[ y = \sin^{-1}(x \sqrt{1 - x} - \sqrt{x} \sqrt{1 - x^2}) \] ### Step 1: Rewrite the Function First, we can simplify the expression inside the inverse sine function. The expression can be rewritten as: ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 ( DERIVATIVE OF FUNCTION WITH RESPECT TO ANOTHER FUNCTION )|10 Videos
  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 (LOGARITHMIC DIFFERENTIATION )|17 Videos
  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 DERIVATIVE OF COMPOSITE FUNCTION (BY CHAIN RULE )|30 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos

Similar Questions

Explore conceptually related problems

(d)/(dx)[sin^(-1)(x sqrt(1-x)-sqrt(x)sqrt(1-x^(2)))] is

(d)/(dx)[sin^(-1)sqrt(((1-x))/(2)]=

(d)/(dx)[sin^(-1)((sqrt(1+x)+sqrt(1-x))/(2))]=

(d)/(dx)[sin^(-1)x+sin^(-1)sqrt(1-x^(2))]=

(d)/(dx)[sin(2tan^(-1)sqrt((1+x)/(1-x)))]=

(d)/(dx)[sin^(2)cot^(-1)sqrt((1-x)/(1+x))] is

d//dx[sin^(2)cot^(-1)""(1)/(sqrt((1+x)/(1-x)))] , is equal to -

(d)/(dx)(ln sin sqrt(x))=

(d)/(dx)(sin^(-1)x+cos^(-1)x) is equal to

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-DIFFERENTIATION -EXERCISE 1 DERIVATIVE OF INVERSE TRIGONOMETRIC FUNCTIONS (BY SUBSTITUTION)
  1. If y = sin^(-1) ((2x)/(1 + x^(2))), "then" (dy)/(dx) is equal to

    Text Solution

    |

  2. If -(1)/sqrt(3) lt x lt (1)/sqrt(3), then tan^(-1) (3x-x^(3))/(1-3x^(...

    Text Solution

    |

  3. If y = sin^(-1) ((1 -x^(2))/(1 +x^(2))),0 lt x lt 1 " then " (dy)/(dx...

    Text Solution

    |

  4. Prove that : cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(...

    Text Solution

    |

  5. Differentiate the functions with respect to x : cos^(-1){(cosx+sinx)/...

    Text Solution

    |

  6. Derivative of sin^(-1) ((1)/(sqrt(x + 1))) with respect to x is

    Text Solution

    |

  7. If sin^(-1)x+sin^(-1)y=pi/2, then dy/dx is equal to

    Text Solution

    |

  8. (d)/(dx)[sin^(-1)(xsqrt(1 - x)- sqrt(x)sqrt(1 - x^(2)))] is equal to

    Text Solution

    |

  9. If y = cos^(-1) ((2x)/(1 + x^(2))), - 1 lt x lt 1 " then " (dy)/(dx)...

    Text Solution

    |

  10. If y = sin^(-1) x + sin^(-1) sqrt(1 - x^(2)), - 1 le x le 1," then " ...

    Text Solution

    |

  11. If y = tan^(-1) (sec x - tan x ) , "then" (dy)/(dx) is equal to

    Text Solution

    |

  12. d/(dx)[sin^2cot^(- 1)sqrt((1-x)/(1+x))] is

    Text Solution

    |

  13. If y = tan^(-1) x + cot^(-1) x + sec^(-1) + "cosec"^(-1) x . "then" (...

    Text Solution

    |

  14. If y = sin^(-1) sqrt(1-x), "then " (dy)/(dx) is equal to

    Text Solution

    |

  15. If y = tan^(-1)((cos x)/(1 + sin x)), "then" (dy)/(dx) is equal to

    Text Solution

    |

  16. If y = sin[cos^(-1){sin(cos^(-1) x)}], "then" (dy)/(dx)" at x" = (1)/...

    Text Solution

    |

  17. If y = tan^(-1) sqrt((1-sinx)/(1+sinx)), then the value of (dy)/(dx...

    Text Solution

    |

  18. The derivative of tan^(-1)((sqrt(1 + x)-sqrt(1-x))/(sqrt(1 + x)+sqrt(1...

    Text Solution

    |