Home
Class 12
MATHS
If y = cos^(-1) ((2x)/(1 + x^(2))), - ...

If ` y = cos^(-1) ((2x)/(1 + x^(2))), - 1 lt x lt 1 " then " (dy)/(dx)` is equal to

A

`(-1)/(1 + x^(2))`

B

`(1)/(1 +x^(2))`

C

`(-2)/(1 +x^(2))`

D

`(2)/(1 + x^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \(\frac{dy}{dx}\) for the function given by: \[ y = \cos^{-1}\left(\frac{2x}{1 + x^2}\right) \] where \(-1 < x < 1\). ### Step 1: Substitute \(x = \tan(\theta)\) We start by substituting \(x\) with \(\tan(\theta)\). Thus, we have: \[ y = \cos^{-1}\left(\frac{2\tan(\theta)}{1 + \tan^2(\theta)}\right) \] ### Step 2: Simplify the expression Using the identity for the double angle of tangent, we know: \[ \frac{2\tan(\theta)}{1 + \tan^2(\theta)} = \sin(2\theta) \] Thus, we can rewrite \(y\) as: \[ y = \cos^{-1}(\sin(2\theta)) \] ### Step 3: Rewrite using cosine Using the identity \(\cos^{-1}(\sin(2\theta))\), we can express this as: \[ y = \cos^{-1}(\sin(2\theta)) = \frac{\pi}{2} - 2\theta \] ### Step 4: Substitute back for \(\theta\) Since \(\theta = \tan^{-1}(x)\), we can substitute back: \[ y = \frac{\pi}{2} - 2\tan^{-1}(x) \] ### Step 5: Differentiate with respect to \(x\) Now we differentiate \(y\) with respect to \(x\): \[ \frac{dy}{dx} = 0 - 2 \cdot \frac{d}{dx}(\tan^{-1}(x)) \] Using the derivative of \(\tan^{-1}(x)\), which is \(\frac{1}{1+x^2}\): \[ \frac{dy}{dx} = -2 \cdot \frac{1}{1+x^2} \] ### Final Result Thus, the derivative \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = -\frac{2}{1+x^2} \] ---

To solve the problem, we need to find \(\frac{dy}{dx}\) for the function given by: \[ y = \cos^{-1}\left(\frac{2x}{1 + x^2}\right) \] where \(-1 < x < 1\). ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 ( DERIVATIVE OF FUNCTION WITH RESPECT TO ANOTHER FUNCTION )|10 Videos
  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 (LOGARITHMIC DIFFERENTIATION )|17 Videos
  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 DERIVATIVE OF COMPOSITE FUNCTION (BY CHAIN RULE )|30 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos

Similar Questions

Explore conceptually related problems

y = cos ^(-1)((2x)/(1 +x^(2))),-1 lt x lt1

If y = sin^(-1) ((1 -x^(2))/(1 +x^(2))),0 lt x lt 1 " then " (dy)/(dx) is equal to

y = cos ^(-1)((1 - x^(2))/(1+ x^(2))) 0 lt x lt 1

If -1 lt x lt 0 , then cos^(-1) x is equal to

y = sin ^(-1)((1 - x^(2))/(1+ x^(2))) 0 lt x lt 1

If y=sec^(-1)(sqrt(1+x^(2))) , when -1 lt x lt 1, then find (dy)/(dx)

If sin^(2) x + cos^(2) y = 1 , " then " (dy)/(dx) is equal to

If y=(cos^(-1)x)/(1+x^(2)),"then " dy/dx=

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-DIFFERENTIATION -EXERCISE 1 DERIVATIVE OF INVERSE TRIGONOMETRIC FUNCTIONS (BY SUBSTITUTION)
  1. If y = sin^(-1) ((2x)/(1 + x^(2))), "then" (dy)/(dx) is equal to

    Text Solution

    |

  2. If -(1)/sqrt(3) lt x lt (1)/sqrt(3), then tan^(-1) (3x-x^(3))/(1-3x^(...

    Text Solution

    |

  3. If y = sin^(-1) ((1 -x^(2))/(1 +x^(2))),0 lt x lt 1 " then " (dy)/(dx...

    Text Solution

    |

  4. Prove that : cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(...

    Text Solution

    |

  5. Differentiate the functions with respect to x : cos^(-1){(cosx+sinx)/...

    Text Solution

    |

  6. Derivative of sin^(-1) ((1)/(sqrt(x + 1))) with respect to x is

    Text Solution

    |

  7. If sin^(-1)x+sin^(-1)y=pi/2, then dy/dx is equal to

    Text Solution

    |

  8. (d)/(dx)[sin^(-1)(xsqrt(1 - x)- sqrt(x)sqrt(1 - x^(2)))] is equal to

    Text Solution

    |

  9. If y = cos^(-1) ((2x)/(1 + x^(2))), - 1 lt x lt 1 " then " (dy)/(dx)...

    Text Solution

    |

  10. If y = sin^(-1) x + sin^(-1) sqrt(1 - x^(2)), - 1 le x le 1," then " ...

    Text Solution

    |

  11. If y = tan^(-1) (sec x - tan x ) , "then" (dy)/(dx) is equal to

    Text Solution

    |

  12. d/(dx)[sin^2cot^(- 1)sqrt((1-x)/(1+x))] is

    Text Solution

    |

  13. If y = tan^(-1) x + cot^(-1) x + sec^(-1) + "cosec"^(-1) x . "then" (...

    Text Solution

    |

  14. If y = sin^(-1) sqrt(1-x), "then " (dy)/(dx) is equal to

    Text Solution

    |

  15. If y = tan^(-1)((cos x)/(1 + sin x)), "then" (dy)/(dx) is equal to

    Text Solution

    |

  16. If y = sin[cos^(-1){sin(cos^(-1) x)}], "then" (dy)/(dx)" at x" = (1)/...

    Text Solution

    |

  17. If y = tan^(-1) sqrt((1-sinx)/(1+sinx)), then the value of (dy)/(dx...

    Text Solution

    |

  18. The derivative of tan^(-1)((sqrt(1 + x)-sqrt(1-x))/(sqrt(1 + x)+sqrt(1...

    Text Solution

    |