Home
Class 12
MATHS
If y = sin^(-1) sqrt(1-x), "then " (dy)...

If ` y = sin^(-1) sqrt(1-x), "then " (dy)/(dx) ` is equal to

A

`(1)/(sqrt(1 -x))`

B

`(-1)/(2sqrt(1 -x))`

C

`(1)/(sqrt(x))`

D

`(-1)/(2sqrt(x)sqrt(1 -x))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( \frac{dy}{dx} \) for the function \( y = \sin^{-1}(\sqrt{1 - x}) \), we can use the chain rule and the derivative of the inverse sine function. Here’s a step-by-step solution: ### Step 1: Identify the function We have: \[ y = \sin^{-1}(\sqrt{1 - x}) \] ### Step 2: Differentiate using the chain rule The derivative of \( \sin^{-1}(u) \) with respect to \( u \) is: \[ \frac{d}{du}(\sin^{-1}(u)) = \frac{1}{\sqrt{1 - u^2}} \] Here, \( u = \sqrt{1 - x} \). We will also need to differentiate \( u \) with respect to \( x \). ### Step 3: Differentiate \( u \) Now, we differentiate \( u = \sqrt{1 - x} \): \[ \frac{du}{dx} = \frac{1}{2\sqrt{1 - x}} \cdot (-1) = -\frac{1}{2\sqrt{1 - x}} \] ### Step 4: Apply the chain rule Now we can apply the chain rule: \[ \frac{dy}{dx} = \frac{d}{du}(\sin^{-1}(u)) \cdot \frac{du}{dx} \] Substituting the derivatives we found: \[ \frac{dy}{dx} = \frac{1}{\sqrt{1 - (\sqrt{1 - x})^2}} \cdot \left(-\frac{1}{2\sqrt{1 - x}}\right) \] ### Step 5: Simplify the expression Now, simplify \( 1 - (\sqrt{1 - x})^2 \): \[ 1 - (\sqrt{1 - x})^2 = 1 - (1 - x) = x \] Thus, we have: \[ \frac{dy}{dx} = \frac{1}{\sqrt{x}} \cdot \left(-\frac{1}{2\sqrt{1 - x}}\right) \] This simplifies to: \[ \frac{dy}{dx} = -\frac{1}{2\sqrt{x(1 - x)}} \] ### Final Answer Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = -\frac{1}{2\sqrt{x(1 - x)}} \] ---

To find the derivative \( \frac{dy}{dx} \) for the function \( y = \sin^{-1}(\sqrt{1 - x}) \), we can use the chain rule and the derivative of the inverse sine function. Here’s a step-by-step solution: ### Step 1: Identify the function We have: \[ y = \sin^{-1}(\sqrt{1 - x}) \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 ( DERIVATIVE OF FUNCTION WITH RESPECT TO ANOTHER FUNCTION )|10 Videos
  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 (LOGARITHMIC DIFFERENTIATION )|17 Videos
  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 DERIVATIVE OF COMPOSITE FUNCTION (BY CHAIN RULE )|30 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos

Similar Questions

Explore conceptually related problems

If y=sin ^(-1)sqrt (1-x^(2)),then (dy)/(dx)=

If y = cos^(-1) ((2cos x - 3 sin x)/(sqrt(13))), " then" (dy)/(dx) is equal to

if y=sqrt(x) + 1/sqrt(x) , then (dy)/(dx) at x=1 is equal to

If y= log (sqrt(x - 1)) - sqrt(x + 1)) , "then " (dy)/(dx) is equal to

If y =sin ^(-1) sqrt((1+x^(2))/( 2) ),then (dy)/(dx) =

If y = sqrt(sin + y ) "then" (dy)/(dx) is equal to

If sin^(2) x + cos^(2) y = 1 , " then " (dy)/(dx) is equal to

If y=sec^(-1)((sqrt(x)+1)/(sqrt(x)-1))+sin^(-1)((sqrt(x)-1)/(sqrt(x)+1)) then (dy)/(dx) is equal to?

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-DIFFERENTIATION -EXERCISE 1 DERIVATIVE OF INVERSE TRIGONOMETRIC FUNCTIONS (BY SUBSTITUTION)
  1. If y = sin^(-1) ((2x)/(1 + x^(2))), "then" (dy)/(dx) is equal to

    Text Solution

    |

  2. If -(1)/sqrt(3) lt x lt (1)/sqrt(3), then tan^(-1) (3x-x^(3))/(1-3x^(...

    Text Solution

    |

  3. If y = sin^(-1) ((1 -x^(2))/(1 +x^(2))),0 lt x lt 1 " then " (dy)/(dx...

    Text Solution

    |

  4. Prove that : cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(...

    Text Solution

    |

  5. Differentiate the functions with respect to x : cos^(-1){(cosx+sinx)/...

    Text Solution

    |

  6. Derivative of sin^(-1) ((1)/(sqrt(x + 1))) with respect to x is

    Text Solution

    |

  7. If sin^(-1)x+sin^(-1)y=pi/2, then dy/dx is equal to

    Text Solution

    |

  8. (d)/(dx)[sin^(-1)(xsqrt(1 - x)- sqrt(x)sqrt(1 - x^(2)))] is equal to

    Text Solution

    |

  9. If y = cos^(-1) ((2x)/(1 + x^(2))), - 1 lt x lt 1 " then " (dy)/(dx)...

    Text Solution

    |

  10. If y = sin^(-1) x + sin^(-1) sqrt(1 - x^(2)), - 1 le x le 1," then " ...

    Text Solution

    |

  11. If y = tan^(-1) (sec x - tan x ) , "then" (dy)/(dx) is equal to

    Text Solution

    |

  12. d/(dx)[sin^2cot^(- 1)sqrt((1-x)/(1+x))] is

    Text Solution

    |

  13. If y = tan^(-1) x + cot^(-1) x + sec^(-1) + "cosec"^(-1) x . "then" (...

    Text Solution

    |

  14. If y = sin^(-1) sqrt(1-x), "then " (dy)/(dx) is equal to

    Text Solution

    |

  15. If y = tan^(-1)((cos x)/(1 + sin x)), "then" (dy)/(dx) is equal to

    Text Solution

    |

  16. If y = sin[cos^(-1){sin(cos^(-1) x)}], "then" (dy)/(dx)" at x" = (1)/...

    Text Solution

    |

  17. If y = tan^(-1) sqrt((1-sinx)/(1+sinx)), then the value of (dy)/(dx...

    Text Solution

    |

  18. The derivative of tan^(-1)((sqrt(1 + x)-sqrt(1-x))/(sqrt(1 + x)+sqrt(1...

    Text Solution

    |