Home
Class 12
MATHS
If y = tan^(-1)((cos x)/(1 + sin x)), "...

If ` y = tan^(-1)((cos x)/(1 + sin x)), "then" (dy)/(dx) ` is equal to

A

`(1)/(2)`

B

2

C

-2

D

`-(1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for \( y = \tan^{-1}\left(\frac{\cos x}{1 + \sin x}\right) \), we will follow these steps: ### Step 1: Simplify the Argument of the Inverse Tangent Function First, simplify the expression inside the \(\tan^{-1}\) function: \[ \frac{\cos x}{1 + \sin x} \] Recall the trigonometric identities: \[ \cos x = \cos^2\left(\frac{x}{2}\right) - \sin^2\left(\frac{x}{2}\right) \] \[ 1 + \sin x = \cos^2\left(\frac{x}{2}\right) + \sin^2\left(\frac{x}{2}\right) + 2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right) \] ### Step 2: Use Trigonometric Identities Rewrite the numerator and the denominator using half-angle identities: \[ \cos x = \cos^2\left(\frac{x}{2}\right) - \sin^2\left(\frac{x}{2}\right) \] \[ 1 + \sin x = \left(\cos\left(\frac{x}{2}\right) + \sin\left(\frac{x}{2}\right)\right)^2 \] Thus, \[ \frac{\cos x}{1 + \sin x} = \frac{\cos^2\left(\frac{x}{2}\right) - \sin^2\left(\frac{x}{2}\right)}{\left(\cos\left(\frac{x}{2}\right) + \sin\left(\frac{x}{2}\right)\right)^2} \] ### Step 3: Simplify the Fraction Factor the numerator using the difference of squares: \[ \frac{\cos^2\left(\frac{x}{2}\right) - \sin^2\left(\frac{x}{2}\right)}{\left(\cos\left(\frac{x}{2}\right) + \sin\left(\frac{x}{2}\right)\right)^2} = \frac{\left(\cos\left(\frac{x}{2}\right) - \sin\left(\frac{x}{2}\right)\right)\left(\cos\left(\frac{x}{2}\right) + \sin\left(\frac{x}{2}\right)\right)}{\left(\cos\left(\frac{x}{2}\right) + \sin\left(\frac{x}{2}\right)\right)^2} \] Cancel out the common term: \[ \frac{\left(\cos\left(\frac{x}{2}\right) - \sin\left(\frac{x}{2}\right)\right)\left(\cos\left(\frac{x}{2}\right) + \sin\left(\frac{x}{2}\right)\right)}{\left(\cos\left(\frac{x}{2}\right) + \sin\left(\frac{x}{2}\right)\right)^2} = \frac{\cos\left(\frac{x}{2}\right) - \sin\left(\frac{x}{2}\right)}{\cos\left(\frac{x}{2}\right) + \sin\left(\frac{x}{2}\right)} \] ### Step 4: Express in Terms of Tangent Divide the numerator and the denominator by \(\cos\left(\frac{x}{2}\right)\): \[ \frac{\cos\left(\frac{x}{2}\right) - \sin\left(\frac{x}{2}\right)}{\cos\left(\frac{x}{2}\right) + \sin\left(\frac{x}{2}\right)} = \frac{1 - \tan\left(\frac{x}{2}\right)}{1 + \tan\left(\frac{x}{2}\right)} \] ### Step 5: Use Tangent Subtraction Formula Recognize that this is the tangent subtraction formula: \[ \tan(a - b) = \frac{\tan a - \tan b}{1 + \tan a \tan b} \] Here, \( a = \frac{\pi}{4} \) and \( b = \frac{x}{2} \): \[ \frac{1 - \tan\left(\frac{x}{2}\right)}{1 + \tan\left(\frac{x}{2}\right)} = \tan\left(\frac{\pi}{4} - \frac{x}{2}\right) \] Thus, we have: \[ y = \tan^{-1}\left(\tan\left(\frac{\pi}{4} - \frac{x}{2}\right)\right) \] ### Step 6: Simplify the Inverse Tangent Since \(\tan^{-1}(\tan \theta) = \theta\) for \(\theta\) in the principal range: \[ y = \frac{\pi}{4} - \frac{x}{2} \] ### Step 7: Differentiate with Respect to \(x\) Now, differentiate \( y = \frac{\pi}{4} - \frac{x}{2} \) with respect to \(x\): \[ \frac{dy}{dx} = \frac{d}{dx}\left(\frac{\pi}{4} - \frac{x}{2}\right) \] \[ \frac{dy}{dx} = 0 - \frac{1}{2} \] \[ \frac{dy}{dx} = -\frac{1}{2} \] ### Final Answer \[ \boxed{-\frac{1}{2}} \]

To find \(\frac{dy}{dx}\) for \( y = \tan^{-1}\left(\frac{\cos x}{1 + \sin x}\right) \), we will follow these steps: ### Step 1: Simplify the Argument of the Inverse Tangent Function First, simplify the expression inside the \(\tan^{-1}\) function: \[ \frac{\cos x}{1 + \sin x} \] Recall the trigonometric identities: \[ \cos x = \cos^2\left(\frac{x}{2}\right) - \sin^2\left(\frac{x}{2}\right) \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 ( DERIVATIVE OF FUNCTION WITH RESPECT TO ANOTHER FUNCTION )|10 Videos
  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 (LOGARITHMIC DIFFERENTIATION )|17 Videos
  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 DERIVATIVE OF COMPOSITE FUNCTION (BY CHAIN RULE )|30 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos

Similar Questions

Explore conceptually related problems

If y = tan^(-1){(cos x)/(1 + sinx)} " then " (dy)/(dx) = ?

If y=tan^(-1)((sin x+cos x)/(cos x-sin x)), then (dy)/(dx) is equal to (1)/(2)(b)0(c)1(d) none of these

If y = tan^(-1) ((1 - cos x)/(sin x)) " then "(dy)/(dx)= ?

If y=tan^(-1)((1+cos x)/(sin x)),then(dy)/(dx)=

If y = log ((cos x)/(1 - sin x)), "then " (dy)/(dx) is equal to

If y=tan^(-1)((cos x)/(1+sin x)), find (dy)/(dx)

y = tan ^ (- 1) ((1-cos x) / (sin x)) then (dy) / (dx)

If y = tan^(-1) (sec x - tan x ) , "then" (dy)/(dx) is equal to

If y=tan^(-1)((1-cos3x)/(sin3x)) , then (dy)/(dx)= . . .

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-DIFFERENTIATION -EXERCISE 1 DERIVATIVE OF INVERSE TRIGONOMETRIC FUNCTIONS (BY SUBSTITUTION)
  1. If y = sin^(-1) ((2x)/(1 + x^(2))), "then" (dy)/(dx) is equal to

    Text Solution

    |

  2. If -(1)/sqrt(3) lt x lt (1)/sqrt(3), then tan^(-1) (3x-x^(3))/(1-3x^(...

    Text Solution

    |

  3. If y = sin^(-1) ((1 -x^(2))/(1 +x^(2))),0 lt x lt 1 " then " (dy)/(dx...

    Text Solution

    |

  4. Prove that : cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(...

    Text Solution

    |

  5. Differentiate the functions with respect to x : cos^(-1){(cosx+sinx)/...

    Text Solution

    |

  6. Derivative of sin^(-1) ((1)/(sqrt(x + 1))) with respect to x is

    Text Solution

    |

  7. If sin^(-1)x+sin^(-1)y=pi/2, then dy/dx is equal to

    Text Solution

    |

  8. (d)/(dx)[sin^(-1)(xsqrt(1 - x)- sqrt(x)sqrt(1 - x^(2)))] is equal to

    Text Solution

    |

  9. If y = cos^(-1) ((2x)/(1 + x^(2))), - 1 lt x lt 1 " then " (dy)/(dx)...

    Text Solution

    |

  10. If y = sin^(-1) x + sin^(-1) sqrt(1 - x^(2)), - 1 le x le 1," then " ...

    Text Solution

    |

  11. If y = tan^(-1) (sec x - tan x ) , "then" (dy)/(dx) is equal to

    Text Solution

    |

  12. d/(dx)[sin^2cot^(- 1)sqrt((1-x)/(1+x))] is

    Text Solution

    |

  13. If y = tan^(-1) x + cot^(-1) x + sec^(-1) + "cosec"^(-1) x . "then" (...

    Text Solution

    |

  14. If y = sin^(-1) sqrt(1-x), "then " (dy)/(dx) is equal to

    Text Solution

    |

  15. If y = tan^(-1)((cos x)/(1 + sin x)), "then" (dy)/(dx) is equal to

    Text Solution

    |

  16. If y = sin[cos^(-1){sin(cos^(-1) x)}], "then" (dy)/(dx)" at x" = (1)/...

    Text Solution

    |

  17. If y = tan^(-1) sqrt((1-sinx)/(1+sinx)), then the value of (dy)/(dx...

    Text Solution

    |

  18. The derivative of tan^(-1)((sqrt(1 + x)-sqrt(1-x))/(sqrt(1 + x)+sqrt(1...

    Text Solution

    |