Home
Class 12
MATHS
If y = sin[cos^(-1){sin(cos^(-1) x)}], ...

If ` y = sin[cos^(-1){sin(cos^(-1) x)}], "then" (dy)/(dx)" at x" = (1)/(2)`

A

0

B

-1

C

`(2)/(sqrt(3))`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given function: **Step 1: Rewrite the function.** Given: \[ y = \sin\left(\cos^{-1}\left(\sin\left(\cos^{-1}(x)\right)\right)\right) \] We can simplify this expression using the identity: \[ \cos^{-1}(x) = \frac{\pi}{2} - \sin^{-1}(x) \] So, we can rewrite: \[ \cos^{-1}(x) = \frac{\pi}{2} - \theta \quad \text{where } \theta = \sin^{-1}(x) \] Thus: \[ \sin\left(\cos^{-1}(x)\right) = \sin\left(\frac{\pi}{2} - \theta\right) = \cos(\theta) = \sqrt{1 - x^2} \] Now substituting back: \[ y = \sin\left(\cos^{-1}(\sin(\theta))\right) \] **Step 2: Simplify further.** Since \(\sin(\theta) = x\), we have: \[ y = \sin\left(\cos^{-1}(x)\right) \] Using the identity again: \[ \sin\left(\cos^{-1}(x)\right) = \sqrt{1 - x^2} \] So now: \[ y = \sqrt{1 - x^2} \] **Step 3: Differentiate y with respect to x.** Now we differentiate \(y\): \[ \frac{dy}{dx} = \frac{d}{dx}(\sqrt{1 - x^2}) \] Using the chain rule: \[ \frac{dy}{dx} = \frac{1}{2\sqrt{1 - x^2}} \cdot (-2x) = \frac{-x}{\sqrt{1 - x^2}} \] **Step 4: Evaluate at \(x = \frac{1}{2}\).** Now we need to find \(\frac{dy}{dx}\) at \(x = \frac{1}{2}\): \[ \frac{dy}{dx}\bigg|_{x = \frac{1}{2}} = \frac{-\frac{1}{2}}{\sqrt{1 - \left(\frac{1}{2}\right)^2}} \] \[ = \frac{-\frac{1}{2}}{\sqrt{1 - \frac{1}{4}}} = \frac{-\frac{1}{2}}{\sqrt{\frac{3}{4}}} = \frac{-\frac{1}{2}}{\frac{\sqrt{3}}{2}} = \frac{-1}{\sqrt{3}} \] Thus, the final answer is: \[ \frac{dy}{dx} \text{ at } x = \frac{1}{2} = \frac{-1}{\sqrt{3}} \] ---

To solve the problem step by step, we start with the given function: **Step 1: Rewrite the function.** Given: \[ y = \sin\left(\cos^{-1}\left(\sin\left(\cos^{-1}(x)\right)\right)\right) \] We can simplify this expression using the identity: \[ \cos^{-1}(x) = \frac{\pi}{2} - \sin^{-1}(x) \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 ( DERIVATIVE OF FUNCTION WITH RESPECT TO ANOTHER FUNCTION )|10 Videos
  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 (LOGARITHMIC DIFFERENTIATION )|17 Videos
  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 DERIVATIVE OF COMPOSITE FUNCTION (BY CHAIN RULE )|30 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos

Similar Questions

Explore conceptually related problems

If y=sin(2 cos^(-1)x),"then " dy/dx=

If y=(sin^(-1)x-cos^(-1)x)/(sin^(-1)x+cos^(-1)x)," then "(dy)/(dx)=

If y=cos^(-1) (sin x^(2)),"then " (dy)/(dx)=

If y=cos^(-1) (1-2 sin^(2) x),"then " dy/dx=

If y=sin^(-1) x+cos^(-1) x,"then "dy/dx=

If y = cos ^(-1) [sin (4^(x))], " find " (dy)/(dx)

If y=cot^(-1)((sin x)/(1+cos x)) then (dy)/(dx)=

if y=tan^(-1)((cos x)/(1+sin x)) then (dy)/(dx)

If y=sin^(-1) (2 cos^(2)x-1),"then " dy/dx=

If y=sin^(-1)x+cos^(-1)x, find (dy)/(dx)

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-DIFFERENTIATION -EXERCISE 1 DERIVATIVE OF INVERSE TRIGONOMETRIC FUNCTIONS (BY SUBSTITUTION)
  1. If y = sin^(-1) ((2x)/(1 + x^(2))), "then" (dy)/(dx) is equal to

    Text Solution

    |

  2. If -(1)/sqrt(3) lt x lt (1)/sqrt(3), then tan^(-1) (3x-x^(3))/(1-3x^(...

    Text Solution

    |

  3. If y = sin^(-1) ((1 -x^(2))/(1 +x^(2))),0 lt x lt 1 " then " (dy)/(dx...

    Text Solution

    |

  4. Prove that : cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(...

    Text Solution

    |

  5. Differentiate the functions with respect to x : cos^(-1){(cosx+sinx)/...

    Text Solution

    |

  6. Derivative of sin^(-1) ((1)/(sqrt(x + 1))) with respect to x is

    Text Solution

    |

  7. If sin^(-1)x+sin^(-1)y=pi/2, then dy/dx is equal to

    Text Solution

    |

  8. (d)/(dx)[sin^(-1)(xsqrt(1 - x)- sqrt(x)sqrt(1 - x^(2)))] is equal to

    Text Solution

    |

  9. If y = cos^(-1) ((2x)/(1 + x^(2))), - 1 lt x lt 1 " then " (dy)/(dx)...

    Text Solution

    |

  10. If y = sin^(-1) x + sin^(-1) sqrt(1 - x^(2)), - 1 le x le 1," then " ...

    Text Solution

    |

  11. If y = tan^(-1) (sec x - tan x ) , "then" (dy)/(dx) is equal to

    Text Solution

    |

  12. d/(dx)[sin^2cot^(- 1)sqrt((1-x)/(1+x))] is

    Text Solution

    |

  13. If y = tan^(-1) x + cot^(-1) x + sec^(-1) + "cosec"^(-1) x . "then" (...

    Text Solution

    |

  14. If y = sin^(-1) sqrt(1-x), "then " (dy)/(dx) is equal to

    Text Solution

    |

  15. If y = tan^(-1)((cos x)/(1 + sin x)), "then" (dy)/(dx) is equal to

    Text Solution

    |

  16. If y = sin[cos^(-1){sin(cos^(-1) x)}], "then" (dy)/(dx)" at x" = (1)/...

    Text Solution

    |

  17. If y = tan^(-1) sqrt((1-sinx)/(1+sinx)), then the value of (dy)/(dx...

    Text Solution

    |

  18. The derivative of tan^(-1)((sqrt(1 + x)-sqrt(1-x))/(sqrt(1 + x)+sqrt(1...

    Text Solution

    |