Home
Class 12
MATHS
The derivative of tan^(-1)((sqrt(1 + x)-...

The derivative of `tan^(-1)((sqrt(1 + x)-sqrt(1-x))/(sqrt(1 + x)+sqrt(1-x)))` is

A

`sqrt(1 - x^(2))`

B

`(1)/(sqrt(1-x^(2)))`

C

`(1)/(2sqrt(1-x^(2)))`

D

x

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \tan^{-1}\left(\frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt{1+x} + \sqrt{1-x}}\right) \), we can follow these steps: ### Step 1: Simplify the Argument of the Inverse Tangent Let \( z = \frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt{1+x} + \sqrt{1-x}} \). ### Step 2: Differentiate Using the Chain Rule Using the chain rule, we have: \[ \frac{dy}{dx} = \frac{1}{1+z^2} \cdot \frac{dz}{dx} \] where \( z = \frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt{1+x} + \sqrt{1-x}} \). ### Step 3: Differentiate \( z \) To differentiate \( z \), we will use the quotient rule: \[ \frac{dz}{dx} = \frac{(\sqrt{1+x} + \sqrt{1-x})\cdot\frac{d}{dx}(\sqrt{1+x} - \sqrt{1-x}) - (\sqrt{1+x} - \sqrt{1-x})\cdot\frac{d}{dx}(\sqrt{1+x} + \sqrt{1-x})}{(\sqrt{1+x} + \sqrt{1-x})^2} \] ### Step 4: Calculate the Derivatives of the Square Roots The derivatives of the square roots are: \[ \frac{d}{dx}(\sqrt{1+x}) = \frac{1}{2\sqrt{1+x}}, \quad \frac{d}{dx}(\sqrt{1-x}) = -\frac{1}{2\sqrt{1-x}} \] ### Step 5: Substitute the Derivatives into the Quotient Rule Substituting these derivatives into our expression for \( \frac{dz}{dx} \): \[ \frac{dz}{dx} = \frac{(\sqrt{1+x} + \sqrt{1-x})\left(\frac{1}{2\sqrt{1+x}} + \frac{1}{2\sqrt{1-x}}\right) - (\sqrt{1+x} - \sqrt{1-x})\left(\frac{1}{2\sqrt{1+x}} - \frac{1}{2\sqrt{1-x}}\right)}{(\sqrt{1+x} + \sqrt{1-x})^2} \] ### Step 6: Simplify \( \frac{dz}{dx} \) This expression can be simplified further, but it may require some algebraic manipulation. ### Step 7: Substitute Back into the Derivative of \( y \) Once you have \( \frac{dz}{dx} \), substitute it back into the expression for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{1}{1+z^2} \cdot \frac{dz}{dx} \] ### Final Expression Finally, you can express the derivative in terms of \( x \) by substituting back \( z \) and simplifying. ---

To find the derivative of the function \( y = \tan^{-1}\left(\frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt{1+x} + \sqrt{1-x}}\right) \), we can follow these steps: ### Step 1: Simplify the Argument of the Inverse Tangent Let \( z = \frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt{1+x} + \sqrt{1-x}} \). ### Step 2: Differentiate Using the Chain Rule Using the chain rule, we have: \[ ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 ( DERIVATIVE OF FUNCTION WITH RESPECT TO ANOTHER FUNCTION )|10 Videos
  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 (LOGARITHMIC DIFFERENTIATION )|17 Videos
  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 DERIVATIVE OF COMPOSITE FUNCTION (BY CHAIN RULE )|30 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos

Similar Questions

Explore conceptually related problems

If y=tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))), find (dy)/(dx)

Solve : (sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))

The differential coefficient of tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))

If y=tan^(-1){(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))}, find (dy)/(dx)

Differentiate the following with respect of x:tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))

The derivative of sqrt(sqrt(x)+1) is

Rationalise: (sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-DIFFERENTIATION -EXERCISE 1 DERIVATIVE OF INVERSE TRIGONOMETRIC FUNCTIONS (BY SUBSTITUTION)
  1. If y = sin^(-1) ((2x)/(1 + x^(2))), "then" (dy)/(dx) is equal to

    Text Solution

    |

  2. If -(1)/sqrt(3) lt x lt (1)/sqrt(3), then tan^(-1) (3x-x^(3))/(1-3x^(...

    Text Solution

    |

  3. If y = sin^(-1) ((1 -x^(2))/(1 +x^(2))),0 lt x lt 1 " then " (dy)/(dx...

    Text Solution

    |

  4. Prove that : cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(...

    Text Solution

    |

  5. Differentiate the functions with respect to x : cos^(-1){(cosx+sinx)/...

    Text Solution

    |

  6. Derivative of sin^(-1) ((1)/(sqrt(x + 1))) with respect to x is

    Text Solution

    |

  7. If sin^(-1)x+sin^(-1)y=pi/2, then dy/dx is equal to

    Text Solution

    |

  8. (d)/(dx)[sin^(-1)(xsqrt(1 - x)- sqrt(x)sqrt(1 - x^(2)))] is equal to

    Text Solution

    |

  9. If y = cos^(-1) ((2x)/(1 + x^(2))), - 1 lt x lt 1 " then " (dy)/(dx)...

    Text Solution

    |

  10. If y = sin^(-1) x + sin^(-1) sqrt(1 - x^(2)), - 1 le x le 1," then " ...

    Text Solution

    |

  11. If y = tan^(-1) (sec x - tan x ) , "then" (dy)/(dx) is equal to

    Text Solution

    |

  12. d/(dx)[sin^2cot^(- 1)sqrt((1-x)/(1+x))] is

    Text Solution

    |

  13. If y = tan^(-1) x + cot^(-1) x + sec^(-1) + "cosec"^(-1) x . "then" (...

    Text Solution

    |

  14. If y = sin^(-1) sqrt(1-x), "then " (dy)/(dx) is equal to

    Text Solution

    |

  15. If y = tan^(-1)((cos x)/(1 + sin x)), "then" (dy)/(dx) is equal to

    Text Solution

    |

  16. If y = sin[cos^(-1){sin(cos^(-1) x)}], "then" (dy)/(dx)" at x" = (1)/...

    Text Solution

    |

  17. If y = tan^(-1) sqrt((1-sinx)/(1+sinx)), then the value of (dy)/(dx...

    Text Solution

    |

  18. The derivative of tan^(-1)((sqrt(1 + x)-sqrt(1-x))/(sqrt(1 + x)+sqrt(1...

    Text Solution

    |