Home
Class 12
MATHS
(d)/(dx) [x^(x) + x^(a) + a^(x) + a^(a)]...

`(d)/(dx) [x^(x) + x^(a) + a^(x) + a^(a)] = …, a ` is constant

A

`x^(x) (1 + log x) + a - x^(a-1)`

B

` x^(x) (1 + log x) + a. x^(a-1) + a^(x) log a `

C

`x^(x) (1 + log x) + a^(a) (1 + loga)`

D

`x^(x) (1 + log x) + a^(a) (1 + log a) + ax^(a-1) + a^(a) (1 + log a)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \(\frac{d}{dx} \left[ x^x + x^a + a^x + a^a \right]\), where \(a\) is a constant, we will differentiate each term separately. ### Step-by-Step Solution: 1. **Differentiate \(x^x\)**: - Let \(u = x^x\). - Taking the natural logarithm: \(\ln u = x \ln x\). - Differentiate both sides: \[ \frac{1}{u} \frac{du}{dx} = \ln x + 1 \] - Therefore, \[ \frac{du}{dx} = u(\ln x + 1) = x^x(\ln x + 1). \] 2. **Differentiate \(x^a\)**: - Let \(v = x^a\). - The derivative is straightforward: \[ \frac{dv}{dx} = ax^{a-1}. \] 3. **Differentiate \(a^x\)**: - Let \(w = a^x\). - Taking the natural logarithm: \(\ln w = x \ln a\). - Differentiate both sides: \[ \frac{1}{w} \frac{dw}{dx} = \ln a. \] - Therefore, \[ \frac{dw}{dx} = w \ln a = a^x \ln a. \] 4. **Differentiate \(a^a\)**: - Let \(z = a^a\). - Since \(a^a\) is a constant, its derivative is: \[ \frac{dz}{dx} = 0. \] 5. **Combine all derivatives**: - Now, we can combine all the derivatives: \[ \frac{d}{dx} \left[ x^x + x^a + a^x + a^a \right] = \frac{du}{dx} + \frac{dv}{dx} + \frac{dw}{dx} + \frac{dz}{dx}. \] - Substituting the values we found: \[ \frac{d}{dx} \left[ x^x + x^a + a^x + a^a \right] = x^x(\ln x + 1) + ax^{a-1} + a^x \ln a + 0. \] 6. **Final Result**: - Thus, the final answer is: \[ \frac{d}{dx} \left[ x^x + x^a + a^x + a^a \right] = x^x(\ln x + 1) + ax^{a-1} + a^x \ln a. \]

To solve the problem \(\frac{d}{dx} \left[ x^x + x^a + a^x + a^a \right]\), where \(a\) is a constant, we will differentiate each term separately. ### Step-by-Step Solution: 1. **Differentiate \(x^x\)**: - Let \(u = x^x\). - Taking the natural logarithm: \(\ln u = x \ln x\). - Differentiate both sides: ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 (DERIVATIVE OF IMPLICIT FUNCTION)|21 Videos
  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 (HIGHER ORDER DERIVATIVE )|15 Videos
  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 ( DERIVATIVE OF FUNCTION WITH RESPECT TO ANOTHER FUNCTION )|10 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos

Similar Questions

Explore conceptually related problems

(d)/(dx)(a^(x)+x^(a))=?

(d)/(dx)sin(x^(x))

(d)/(dx)(3^x)(e^x)

(d)/(dx)(3x^(2)+2x)=

d/(dx) (e^(x sin x)) =

(d)/(dx)(x^((1)/(x)))

(d)/(dx)(sin x log x)

d/(dx)(x^(4x^(3))) =

(d)/(dx)(e^(x)+log x+tan x+x^(6))