Home
Class 12
MATHS
If (cos x)^(y) = (cos y)^(x) , "then" (...

If ` (cos x)^(y) = (cos y)^(x) , "then" (dy)/(dx) ` is equal to

A

`(log(cos y) + y(tan x))/(log(cos x) + x tan y)`

B

`(log(cos y) - y(tan x))/(log(cos x) - x( tan y))`

C

`(log(tanx) + y(cos y))/(log(cos x) + x( tan y))`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( (\cos x)^y = (\cos y)^x \) and find \( \frac{dy}{dx} \), we will follow these steps: ### Step 1: Take the logarithm of both sides We start by taking the natural logarithm of both sides of the equation: \[ \ln((\cos x)^y) = \ln((\cos y)^x) \] ### Step 2: Apply the logarithmic identity Using the property of logarithms that states \( \ln(a^b) = b \ln(a) \), we can rewrite the equation: \[ y \ln(\cos x) = x \ln(\cos y) \] ### Step 3: Differentiate both sides with respect to \( x \) Now we differentiate both sides of the equation with respect to \( x \): \[ \frac{d}{dx}(y \ln(\cos x)) = \frac{d}{dx}(x \ln(\cos y)) \] Using the product rule on both sides: - Left side: \[ \frac{dy}{dx} \ln(\cos x) + y \frac{d}{dx}(\ln(\cos x)) \] Using the chain rule for the derivative of \( \ln(\cos x) \): \[ \frac{d}{dx}(\ln(\cos x)) = \frac{-\sin x}{\cos x} = -\tan x \] So, the left side becomes: \[ \frac{dy}{dx} \ln(\cos x) - y \tan x \] - Right side: \[ \ln(\cos y) + x \frac{d}{dx}(\ln(\cos y)) \] Using the chain rule for the derivative of \( \ln(\cos y) \): \[ \frac{d}{dx}(\ln(\cos y)) = \frac{-\sin y}{\cos y} \frac{dy}{dx} = -\tan y \frac{dy}{dx} \] So, the right side becomes: \[ \ln(\cos y) - x \tan y \frac{dy}{dx} \] ### Step 4: Set the derivatives equal to each other Now we set the derivatives from both sides equal: \[ \frac{dy}{dx} \ln(\cos x) - y \tan x = \ln(\cos y) - x \tan y \frac{dy}{dx} \] ### Step 5: Collect all \( \frac{dy}{dx} \) terms Rearranging gives: \[ \frac{dy}{dx} \ln(\cos x) + x \tan y \frac{dy}{dx} = \ln(\cos y) + y \tan x \] Factoring out \( \frac{dy}{dx} \): \[ \frac{dy}{dx} \left( \ln(\cos x) + x \tan y \right) = \ln(\cos y) + y \tan x \] ### Step 6: Solve for \( \frac{dy}{dx} \) Now we can solve for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{\ln(\cos y) + y \tan x}{\ln(\cos x) + x \tan y} \] ### Final Answer Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = \frac{\ln(\cos y) + y \tan x}{\ln(\cos x) + x \tan y} \]

To solve the problem \( (\cos x)^y = (\cos y)^x \) and find \( \frac{dy}{dx} \), we will follow these steps: ### Step 1: Take the logarithm of both sides We start by taking the natural logarithm of both sides of the equation: \[ \ln((\cos x)^y) = \ln((\cos y)^x) \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 (DERIVATIVE OF IMPLICIT FUNCTION)|21 Videos
  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 (HIGHER ORDER DERIVATIVE )|15 Videos
  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 ( DERIVATIVE OF FUNCTION WITH RESPECT TO ANOTHER FUNCTION )|10 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos

Similar Questions

Explore conceptually related problems

If (cos x)^(y)=(sin y)^(x), then (dy)/(dx) equals-

If (cos x)^(y)=(cos y)^(x), find (dy)/(dx)

If y= ( cos x ^(2))^(2) , "then" (dy)/(dx) is equal to

If (cos)^(y)=(sin y)^(x), then (dy)/(dx) equals

If (cos x)^(y)=(cos y)^(x) find (dy)/(dx)

If y = log_(cos x) sin x " then" (dy)/(dx) is equal to

If y = log ((cos x)/(1 - sin x)), "then " (dy)/(dx) is equal to

If e^(x+y) =cos (x-y) ,then (dy)/(dx)=

If (cos x)^(y)=(sin y)^(x), find (dy)/(dx)

If (cos x)^(y)=(sin y)^(x), find (dy)/(dx)