Home
Class 12
MATHS
If f(x) = (1 + x) (1 + x^(2)) (1 + x^(4...

If ` f(x) = (1 + x) (1 + x^(2)) (1 + x^(4)) (1 + x^(8)) ` , then f'(1) is

A

130

B

120

C

110

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f'(1) \) for the function \( f(x) = (1 + x)(1 + x^2)(1 + x^4)(1 + x^8) \), we will follow these steps: ### Step 1: Rewrite the function We start with the function: \[ f(x) = (1 + x)(1 + x^2)(1 + x^4)(1 + x^8) \] ### Step 2: Take the natural logarithm Taking the natural logarithm of both sides gives: \[ \log f(x) = \log(1 + x) + \log(1 + x^2) + \log(1 + x^4) + \log(1 + x^8) \] ### Step 3: Differentiate both sides Now we differentiate both sides with respect to \( x \): \[ \frac{f'(x)}{f(x)} = \frac{1}{1 + x} + \frac{2x}{1 + x^2} + \frac{4x^3}{1 + x^4} + \frac{8x^7}{1 + x^8} \] ### Step 4: Solve for \( f'(x) \) Multiplying both sides by \( f(x) \) gives: \[ f'(x) = f(x) \left( \frac{1}{1 + x} + \frac{2x}{1 + x^2} + \frac{4x^3}{1 + x^4} + \frac{8x^7}{1 + x^8} \right) \] ### Step 5: Evaluate \( f(1) \) Next, we calculate \( f(1) \): \[ f(1) = (1 + 1)(1 + 1^2)(1 + 1^4)(1 + 1^8) = 2 \cdot 2 \cdot 2 \cdot 2 = 16 \] ### Step 6: Evaluate \( f'(1) \) Now we substitute \( x = 1 \) into the derivative: \[ f'(1) = f(1) \left( \frac{1}{1 + 1} + \frac{2 \cdot 1}{1 + 1^2} + \frac{4 \cdot 1^3}{1 + 1^4} + \frac{8 \cdot 1^7}{1 + 1^8} \right) \] Calculating each term: - \( \frac{1}{2} \) - \( \frac{2}{2} = 1 \) - \( \frac{4}{2} = 2 \) - \( \frac{8}{2} = 4 \) Adding these gives: \[ \frac{1}{2} + 1 + 2 + 4 = \frac{1}{2} + \frac{2}{2} + \frac{4}{2} + \frac{8}{2} = \frac{15}{2} \] ### Step 7: Final calculation of \( f'(1) \) Thus, we have: \[ f'(1) = 16 \cdot \frac{15}{2} = 120 \] ### Conclusion The value of \( f'(1) \) is: \[ \boxed{120} \]

To find \( f'(1) \) for the function \( f(x) = (1 + x)(1 + x^2)(1 + x^4)(1 + x^8) \), we will follow these steps: ### Step 1: Rewrite the function We start with the function: \[ f(x) = (1 + x)(1 + x^2)(1 + x^4)(1 + x^8) \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 (DERIVATIVE OF IMPLICIT FUNCTION)|21 Videos
  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 (HIGHER ORDER DERIVATIVE )|15 Videos
  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 ( DERIVATIVE OF FUNCTION WITH RESPECT TO ANOTHER FUNCTION )|10 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos

Similar Questions

Explore conceptually related problems

Let f : R to and f (x) = (x (x^(4) + 1) (x+1) +x ^(4)+2)/(x^(2) +x+1), then f (x) is :

Find the derivative of the function f(x) given by f(x)=(1+x)(1+x^(2))(1+x^(4))(1+x^(8)) and hence find f'(1)

Find the derivative of the function given by f(x)=(1+x)(1+x^(2))(1+x^(4))(1+x^(8)) and,hence,find f'(1)

If f(x)=(1+x)(1+x^2)(1+x^3)(1+x^4) , then f'(0)=1

(1) If f(x+(1)/(x))=x-(1)/(x) then f(x) is

If f(x^(2) - 4x + 4) = x^(2) + 1 . Find f(1) if f(1) lt 8 .

If f(x)=(1+x)/(1-x) then f(x)*(f(x^(2)))/(1+(f(x))^(2))

If f(x)=log((1+x)/(1-x))f(2(x)/(1+x^(2)))=2f(x)

If f(x)=(x-1)/(2x^(2)-7x+5) for x!=1 and f(x)=-(1)/(3) for x=1 then f'(1)=