Home
Class 12
MATHS
If y = sqrt(((x-1)(x-2))/((x-3)(x-4)(x-5...

If `y = sqrt(((x-1)(x-2))/((x-3)(x-4)(x-5)))" then "(dy)/(dx)` is equal to

A

` (1)/(2) sqrt(((x-1)(x-2))/((x-3)(x-4)(x-5)))`
`{(1)/(x-3) +(1)/(x-2) -(1)/(x-3)-(1)/(x-4) -(1)/(x-5)}`

B

` (1)/(2) sqrt(((x-1)(x-2))/((x-3)(x-4)(x-5)))`
`{(1)/(x-3) -(1)/(x-2) +(1)/(x-3)+(1)/(x-4) +(1)/(x-5)}`

C

` (1)/(2) sqrt(((x-1)(x-2))/((x-3)(x-4)(x-5)))`
`{(1)/(x-3) -(1)/(x-2) +(1)/(x-3)-(1)/(x-4) +(1)/(x-5)}`

D

None of the above

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}} \), we will follow these steps: ### Step 1: Rewrite the Function We can rewrite the function in a more manageable form: \[ y = \left( \frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)} \right)^{1/2} \] ### Step 2: Apply the Chain Rule To differentiate \( y \), we will use the chain rule. The derivative of \( y \) with respect to \( x \) is: \[ \frac{dy}{dx} = \frac{1}{2} \left( \frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)} \right)^{-1/2} \cdot \frac{d}{dx} \left( \frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)} \right) \] ### Step 3: Differentiate the Quotient Now we need to differentiate the quotient \( \frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)} \) using the quotient rule: \[ \frac{d}{dx} \left( \frac{u}{v} \right) = \frac{u'v - uv'}{v^2} \] where \( u = (x-1)(x-2) \) and \( v = (x-3)(x-4)(x-5) \). #### Step 3.1: Differentiate \( u \) \[ u = (x-1)(x-2) \implies u' = (x-1) + (x-2) = 2x - 3 \] #### Step 3.2: Differentiate \( v \) \[ v = (x-3)(x-4)(x-5) \] Using the product rule: \[ v' = (x-4)(x-5) + (x-3)(x-5) + (x-3)(x-4) = 3x^2 - 36x + 60 \] ### Step 4: Substitute \( u \), \( u' \), \( v \), and \( v' \) Now substituting \( u \), \( u' \), \( v \), and \( v' \) into the quotient rule: \[ \frac{d}{dx} \left( \frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)} \right) = \frac{(2x - 3)(x-3)(x-4)(x-5) - (x-1)(x-2)(3x^2 - 36x + 60)}{((x-3)(x-4)(x-5))^2} \] ### Step 5: Combine Everything Now substituting back into our derivative expression: \[ \frac{dy}{dx} = \frac{1}{2} \left( \frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)} \right)^{-1/2} \cdot \frac{(2x - 3)(x-3)(x-4)(x-5) - (x-1)(x-2)(3x^2 - 36x + 60)}{((x-3)(x-4)(x-5))^2} \] ### Final Step: Simplify This expression can be simplified further, but the key derivative is captured in the expression above.

To find the derivative of the function \( y = \sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}} \), we will follow these steps: ### Step 1: Rewrite the Function We can rewrite the function in a more manageable form: \[ y = \left( \frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)} \right)^{1/2} \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 (DERIVATIVE OF IMPLICIT FUNCTION)|21 Videos
  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 (HIGHER ORDER DERIVATIVE )|15 Videos
  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 ( DERIVATIVE OF FUNCTION WITH RESPECT TO ANOTHER FUNCTION )|10 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos

Similar Questions

Explore conceptually related problems

y=sqrt(((x-1)(x-2))/((x-3)(x-4)(x-5))), find (dy)/(dx)

If y=3sqrt((3x-1)/( (2x+3)(5-x) ^(2))),then (dy)/(dx)=

If y=sqrt(((x-3)(x^(2)+4))/((3x^(2)+4x+5))) , find (dy)/(dx) .

If y = x^sqrt(x) , "then "(dy)/(dx) is equal to

If : y=(x+1)(x+2)(x+3)(x+4)(x+5)," then: "(dy)/(dx)" at "x=0 is

If x^(2)+y^(2)=4, then y(dy)/(dx)+x is equal to

If y=sec^(-1)((sqrt(x)+1)/(sqrt(x)-1))+sin^(-1)((sqrt(x)-1)/(sqrt(x)+1)) then (dy)/(dx) is equal to?

If y=sqrt(x)^(sqrt(x))-oo then (dy)/(dx) is equal to

If y=sqrt((sqrt(x-1))/(sqrt(x+1)))," then "(dy)/(dx)|_(x=4)=