Home
Class 12
MATHS
If y=(1+x)(1+x^2)(1+x^4)(1+x^(2n)), then...

If `y=(1+x)(1+x^2)(1+x^4)(1+x^(2n)),` then find `(dy)/(dx)a tx=0.`

A

0

B

-1

C

1

D

2

Text Solution

Verified by Experts

The correct Answer is:
C

Given , ` y = (1 + x) (1 +x^(2)) (1 +x^(4)) …..(1 +x^(2n))`
On taking log both sides , we get
` log y = log[(1 + x)(1 + x^(2) )(1 + x^(4)) …(1 + x^(2n))]`
` rArr log y = log (1 +x)+ log(1 +x^(2)) + log (1 +x^(4)) + ...log(1 +x^(2n))`
On differentiating both sides w.r.t.x, we get
`(1)/(y) (dy)/(dx) = (1)/(1 +x) +(1)/(1 + x^(2)).2x + (1)/(1 +x^(4)).4x^(3) + ...+(1)/(1 +x^(2n)). 2nx^(2n-1)`
`rArr (dy)/(dx) = y [ (1)/(1+x)+(1)/(1 + x^(2)) +(4x^(3))/(1 + x^(4)) + ...+ (2nx^(2n-1))/(1 + x^(2n))]`
`rArr |(dy)/(dx)|_(x =0)=1[(1)/(1 +0) + 0 + 0 + ... + 0]`
`= 1, for x = 0 x , y= 1 `
Alternate Method
`y = ((1 -x) (1 +x)(1 +x^(2)) (1 +x^(4)) ......(1 + x^(2n)))/((1 -x))=(1 -x^(4n))/(1-x)`
` rArr (dy)/(dx) = ((1 -x) (-4nx^(4n-1))-(1-x^(4n))(-1))/((1-x)^(2))`
`= (-4n(1-x)x^(4n-1) + (1 -x^(4n)))/((1-x)^(2))`
` therefore ((dy)/*dx))_(x=0 =1`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 (DERIVATIVE OF IMPLICIT FUNCTION)|21 Videos
  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 (HIGHER ORDER DERIVATIVE )|15 Videos
  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 ( DERIVATIVE OF FUNCTION WITH RESPECT TO ANOTHER FUNCTION )|10 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos

Similar Questions

Explore conceptually related problems

If y=(1+x)(1+x^(2))(1+x^(4))...(1+x^(2n)) then find (dy)/(dx) at x=0

If y=(1+x)(1+x^(2))(1+x^(4))...(1+x^(2^(n))) then (dy)/(dx) at x=0 is

If y=(1+x)(1+x^(2))(1+x^(4))(1+x^(8)) then (dy)/(dx) is:

If f'(x)=sqrt(2x^(2)-1) and y=f(x^(2)), then find (dy)/(dx) at x=1

If y=(x+(1)/(x))^(x)+(x^(2)+1)/(x^(2)-1), find (dy)/(dx)

If y=[(x^(2)+1)/(x+1)] , then find (dy)/(dx) .

y=x^(x cos x)+(x^(2)+1)/(x^(2)-1), find (dy)/(dx)

If y=f((2x-1)/(x^(2)+1)) and f'(x)=sin x^(2), find (dy)/(dx)