Home
Class 12
MATHS
If y = (1 + (2)/(x)) (1 + (2)/(x))(1 + (...

If `y = (1 + (2)/(x)) (1 + (2)/(x))(1 + (3)/(x))...(1 + (n)/(x))`
` x ne 0 , "then " (dy)/(dx) ` when x = - 1 is

A

`n!`

B

`(n-1)!`

C

`(-1)^(n) (n-1)!`

D

`(-1)^(n)n! `

Text Solution

Verified by Experts

The correct Answer is:
C

Given ,`y = (1 + (1)/(x)) (1 + (2)/(x)) (1 +(3)/(x))...(1+(n)/(x))`
On taking log both sides , we get
`log y = log (1 + (1)/(x)) + log(1 + (2)/(x)) = … + log (1 +(n)/(x))`
On differentiating both sides w.r.t.x, we get
`(1)/(y)(dy)/(d) =(1)/( (1 + (1)/(x))) (-(1)/(x^(2))) + (1)/((1 + (2)/(x))) (-(2)/(x^(2))) + ...+ (1)/((1 + (n)/(x))) (-(n)/(x^(2)))`
`(dy)/(dx) = - ((1 + (2)/(3))(1 + (3)/(x))...(1 +(n)/(x)) 2 (1 + (1)/(x)) (1 +(3)/(x)) (1 +(3)/(x)) ...(1 + (n)/(x)))/(x^(2))`
`therefore |((dy)/(dx))|_(x = - 1) = ((-1)(-1)(-2)(-3)...(1-n))/(1) - 0 -0`
`= (-1)^(n) (1) (2) (3) ...(n-1) = (-1)^(n) (n-1)!`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 (DERIVATIVE OF IMPLICIT FUNCTION)|21 Videos
  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 (HIGHER ORDER DERIVATIVE )|15 Videos
  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 ( DERIVATIVE OF FUNCTION WITH RESPECT TO ANOTHER FUNCTION )|10 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos

Similar Questions

Explore conceptually related problems

If y = 1 +(1)/(x) +(1)/(x^(2)) + (1)/(x^(3)) + ……..+oo with |x| gt 1 then (dy)/(dx) is .

( 1 ) /(x) + (1 ) /( y) = 7 , ( 2)/(x) + ( 3) /( y) = 17 (x ne 0, y ne 0 ) .

If y=1+(1)/(x)+(1)/(x^(2))+(1)/(x^(3))+... to oo with |x|>1 then (dy)/(dx)=

If (x)/(sqrt( 1+x)) +(y)/( sqrt(1+y))=0and x ne y ,then (dy)/(dx)=

If y=x+(1)/(x+(1)/(x+(1)/(x+))), prove that (dy)/(dx)=(y)/(2y-x)

If y=x+(1)/(x+(1)/(x+(1)/(x+1))), prove that (dy)/(dx)=(y)/(2y-x)

If y=2x^((3)/(2))(x^((1)/(2))+2)(x^((1)/(2))-1) then (dy)/(dx) is