Home
Class 12
MATHS
If y = tan^(-1) ((4sqrt(x))/(1 - 4x))" ...

If ` y = tan^(-1) ((4sqrt(x))/(1 - 4x))" then" (dy)/(dx)` is

A

`(2)/(1 + 4x )`

B

`(-2)/((1 + 4x) sqrt(x))`

C

`(-2)/(1 + 4x)`

D

`(2)/((1 + 4x) sqrt(x))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \tan^{-1} \left( \frac{4\sqrt{x}}{1 - 4x} \right) \), we can follow these steps: ### Step 1: Recognize the form of the function We have \( y = \tan^{-1} \left( \frac{4\sqrt{x}}{1 - 4x} \right) \). This resembles the tangent double angle formula, where: \[ \tan(2\theta) = \frac{2\tan(\theta)}{1 - \tan^2(\theta)} \] We can express \( \frac{4\sqrt{x}}{1 - 4x} \) in terms of \( \tan(2\theta) \). ### Step 2: Set up the substitution Let \( \tan(\theta) = 2\sqrt{x} \). Then, we can express \( \tan(2\theta) \) as follows: \[ \tan(2\theta) = \frac{2\tan(\theta)}{1 - \tan^2(\theta)} = \frac{2(2\sqrt{x})}{1 - (2\sqrt{x})^2} = \frac{4\sqrt{x}}{1 - 4x} \] This means that: \[ y = \tan^{-1}(\tan(2\theta)) = 2\theta \] ### Step 3: Find \( \theta \) From our substitution, we have: \[ \theta = \tan^{-1}(2\sqrt{x}) \] Thus, we can rewrite \( y \) as: \[ y = 2\tan^{-1}(2\sqrt{x}) \] ### Step 4: Differentiate \( y \) Now, we can differentiate \( y \): \[ \frac{dy}{dx} = 2 \cdot \frac{d}{dx} \left( \tan^{-1}(2\sqrt{x}) \right) \] Using the derivative of \( \tan^{-1}(u) \), which is \( \frac{1}{1 + u^2} \cdot \frac{du}{dx} \), we have: \[ \frac{d}{dx} \left( \tan^{-1}(2\sqrt{x}) \right) = \frac{1}{1 + (2\sqrt{x})^2} \cdot \frac{d}{dx}(2\sqrt{x}) \] ### Step 5: Differentiate \( 2\sqrt{x} \) Now, we differentiate \( 2\sqrt{x} \): \[ \frac{d}{dx}(2\sqrt{x}) = 2 \cdot \frac{1}{2\sqrt{x}} = \frac{1}{\sqrt{x}} \] ### Step 6: Substitute back into the derivative Now substituting back, we have: \[ \frac{dy}{dx} = 2 \cdot \frac{1}{1 + 4x} \cdot \frac{1}{\sqrt{x}} = \frac{2}{(1 + 4x)\sqrt{x}} \] ### Final Result Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = \frac{2}{(1 + 4x)\sqrt{x}} \]

To find the derivative of the function \( y = \tan^{-1} \left( \frac{4\sqrt{x}}{1 - 4x} \right) \), we can follow these steps: ### Step 1: Recognize the form of the function We have \( y = \tan^{-1} \left( \frac{4\sqrt{x}}{1 - 4x} \right) \). This resembles the tangent double angle formula, where: \[ \tan(2\theta) = \frac{2\tan(\theta)}{1 - \tan^2(\theta)} \] We can express \( \frac{4\sqrt{x}}{1 - 4x} \) in terms of \( \tan(2\theta) \). ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET CORER|35 Videos
  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 (HIGHER ORDER DERIVATIVE )|15 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos

Similar Questions

Explore conceptually related problems

If y=tan ^(-1) sqrt(( a-x)/( a+x)) ,then (dy)/(dx) =

If y=tan ^(-1) ((2^(x+1))/( 1-4^(x))),then (dy)/(dx) =

If y=tan^(-1)((x)/(sqrt(1+x^(2))-1)), then (dy)/(dx)=

If y = tan^(-1) {(sqrt(1 + x^(2)) -1)/(x)} " then " (dy)/(dx)= ?

If y=tan^(-1) sqrt((1-sin 4x)/(1+sin 4x)),"then " dy/dx=

If y=tan ^(-1) (sqrt( 1+x^(2)) +x ),then (dy)/(dx) =

If y=tan ^(-1) (sqrt( 1+x^(2))-x),then ( dy)/(dx)=

If y = sqrt((1 + tan x)/(1 - tan x)) " then " (dy)/(dx)= ?

If y =cot ^(-1) ((3+4tan x )/( 4-3tan x) ) ,then (dy)/(dx)=

If y=tan^(-1)((sqrt(1+x^(2))-1)/(x)) , then find (dy)/(dx) when -1lexle1.

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-DIFFERENTIATION -EXERCISE 2 (MISCELLANEOUS PROBLEMS)
  1. If f(x) = 3^(x) " and" g(x) = 4^(x) , " then" (f'(0) - g'(0))/(1 +f'...

    Text Solution

    |

  2. If y = sqrt((1+ sin x)/(1+ cos x)), " then" (dy)/(dx) is equal to

    Text Solution

    |

  3. If y = tan^(-1) ((4sqrt(x))/(1 - 4x))" then" (dy)/(dx) is

    Text Solution

    |

  4. If y = tan^(-1) ((4sqrt(x))/(1 - 4x))" then" (dy)/(dx) is

    Text Solution

    |

  5. (d)/(dx) "" tan^(-1) ((2e^(x))/(1 - e^(2x)))=

    Text Solution

    |

  6. If y = tan^(-1)((sin 3x - cos 3x )/(sin 3x + cos 3x))" then" (dy)/(dx...

    Text Solution

    |

  7. If y = loga x + log xa + log x x + logaa, thendy/dx is equal to

    Text Solution

    |

  8. If x = e^(x//y), then dy/dx is equal to

    Text Solution

    |

  9. If f(x) = log ((m(x))/(n(x))), m(1) = n(1) = 1 and m'(1) = n'(1)...

    Text Solution

    |

  10. If y = t^(2) + t - 1 " then " (dy)/(dx) is equal to

    Text Solution

    |

  11. If xe^(xy)=y+sin^2x then at x=0 (dy)/dx=

    Text Solution

    |

  12. If y=sqrt(x(log)e x) , then find (dy)/(dx) at x=e .

    Text Solution

    |

  13. Let y=e^(2x)dotT h e n((d^2y)/(dx^2))((d^2x)/(dy^2))i s

    Text Solution

    |

  14. If f(x)=|x-2| and g(x)=f(f(x)), then g'(x)"for "x gt 20,is

    Text Solution

    |

  15. If y=(a+b x^(3/2))/(x^(5/4))a n dy^(prime)=0a tx=5, then the value o...

    Text Solution

    |

  16. The value of (d)/(dx) (|x-1| + |x -5|) at x = 3 is

    Text Solution

    |

  17. If y=f(x)" and "ycosx+cosy=pi, then the value of f''(0) is

    Text Solution

    |

  18. Derivatives of y = cos^(-1) sqrt((cos 3x)/(cos ^(3) x)) with respect ...

    Text Solution

    |

  19. if sqrt(x^2+y^2)=ae^(tan^-1 (y/x)) , a > 0, (y(0) > 0) then y"(0) equa...

    Text Solution

    |

  20. If y = In ((x)/(a + bx))^(x), "then " x^(3)(d^(y))/(dx^(2)) is equa...

    Text Solution

    |