Home
Class 12
MATHS
(d)/(dx) "" tan^(-1) ((2e^(x))/(1 - e^(2...

`(d)/(dx) "" tan^(-1) ((2e^(x))/(1 - e^(2x)))= `

A

`(2e^(x))/(1 - e^(2x))`

B

`(e^(x))/(1 - e^(2x))`

C

`(2e^(x))/(1 + e^(2x))`

D

`(e^(x))/(1 + e^(2x))`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \tan^{-1} \left( \frac{2e^x}{1 - e^{2x}} \right) \), we will follow these steps: ### Step 1: Simplify the expression inside the arctangent We can use the identity for the tangent of a double angle: \[ \tan(2\theta) = \frac{2\tan(\theta)}{1 - \tan^2(\theta)} \] Let \( e^x = \tan(\theta) \). Then, we have: \[ \tan(\theta) = e^x \quad \text{and} \quad \tan^2(\theta) = e^{2x} \] Thus, we can rewrite the expression: \[ \tan^{-1} \left( \frac{2e^x}{1 - e^{2x}} \right) = \tan^{-1}(\tan(2\theta)) = 2\theta \] ### Step 2: Substitute back for \(\theta\) Since \( \theta = \tan^{-1}(e^x) \), we have: \[ y = 2\tan^{-1}(e^x) \] ### Step 3: Differentiate the function Now we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = 2 \cdot \frac{d}{dx} \left( \tan^{-1}(e^x) \right) \] Using the derivative of \( \tan^{-1}(u) \), which is \( \frac{1}{1 + u^2} \cdot \frac{du}{dx} \), we get: \[ \frac{d}{dx} \left( \tan^{-1}(e^x) \right) = \frac{1}{1 + (e^x)^2} \cdot \frac{d}{dx}(e^x) \] Calculating \( \frac{d}{dx}(e^x) \): \[ \frac{d}{dx}(e^x) = e^x \] Thus, we have: \[ \frac{d}{dx} \left( \tan^{-1}(e^x) \right) = \frac{e^x}{1 + e^{2x}} \] ### Step 4: Combine the results Now substituting back into our derivative: \[ \frac{dy}{dx} = 2 \cdot \frac{e^x}{1 + e^{2x}} = \frac{2e^x}{1 + e^{2x}} \] ### Final Answer Therefore, the derivative of \( y = \tan^{-1} \left( \frac{2e^x}{1 - e^{2x}} \right) \) is: \[ \frac{dy}{dx} = \frac{2e^x}{1 + e^{2x}} \] ---

To differentiate the function \( y = \tan^{-1} \left( \frac{2e^x}{1 - e^{2x}} \right) \), we will follow these steps: ### Step 1: Simplify the expression inside the arctangent We can use the identity for the tangent of a double angle: \[ \tan(2\theta) = \frac{2\tan(\theta)}{1 - \tan^2(\theta)} \] Let \( e^x = \tan(\theta) \). Then, we have: ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET CORER|35 Videos
  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 (HIGHER ORDER DERIVATIVE )|15 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos

Similar Questions

Explore conceptually related problems

d/(dx) [tan^(-1)(sqrt(x))] =

(d)/(dx)tan^(-1)((x)/(1-sqrt(1+x^(2))))]=

(d)/(dx)[tan^(-1)((1)/(2x)-(x)/(2))]=

d/dx(tan^(-1)x) is :

(d)/(dx)(tan^(-1)((x)/(sqrt(a^(2)-x^(2))))

(d)/(dx)[sec(tan^(-1)x)]=

(d)/(dx)(tan^(-1)((2)/(x^(-1)-x))) is equal to

(d)/(dx)(tan^(-1)(birth x))

Differentiate the following w.r.t. x : tan^(-1)((e^(2x)+1)/(e^(2x)-1))

(d)/(dx)[tan^(-1)((10x)/(4-6x^(2)))]=

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-DIFFERENTIATION -EXERCISE 2 (MISCELLANEOUS PROBLEMS)
  1. If y = tan^(-1) ((4sqrt(x))/(1 - 4x))" then" (dy)/(dx) is

    Text Solution

    |

  2. If y = tan^(-1) ((4sqrt(x))/(1 - 4x))" then" (dy)/(dx) is

    Text Solution

    |

  3. (d)/(dx) "" tan^(-1) ((2e^(x))/(1 - e^(2x)))=

    Text Solution

    |

  4. If y = tan^(-1)((sin 3x - cos 3x )/(sin 3x + cos 3x))" then" (dy)/(dx...

    Text Solution

    |

  5. If y = loga x + log xa + log x x + logaa, thendy/dx is equal to

    Text Solution

    |

  6. If x = e^(x//y), then dy/dx is equal to

    Text Solution

    |

  7. If f(x) = log ((m(x))/(n(x))), m(1) = n(1) = 1 and m'(1) = n'(1)...

    Text Solution

    |

  8. If y = t^(2) + t - 1 " then " (dy)/(dx) is equal to

    Text Solution

    |

  9. If xe^(xy)=y+sin^2x then at x=0 (dy)/dx=

    Text Solution

    |

  10. If y=sqrt(x(log)e x) , then find (dy)/(dx) at x=e .

    Text Solution

    |

  11. Let y=e^(2x)dotT h e n((d^2y)/(dx^2))((d^2x)/(dy^2))i s

    Text Solution

    |

  12. If f(x)=|x-2| and g(x)=f(f(x)), then g'(x)"for "x gt 20,is

    Text Solution

    |

  13. If y=(a+b x^(3/2))/(x^(5/4))a n dy^(prime)=0a tx=5, then the value o...

    Text Solution

    |

  14. The value of (d)/(dx) (|x-1| + |x -5|) at x = 3 is

    Text Solution

    |

  15. If y=f(x)" and "ycosx+cosy=pi, then the value of f''(0) is

    Text Solution

    |

  16. Derivatives of y = cos^(-1) sqrt((cos 3x)/(cos ^(3) x)) with respect ...

    Text Solution

    |

  17. if sqrt(x^2+y^2)=ae^(tan^-1 (y/x)) , a > 0, (y(0) > 0) then y"(0) equa...

    Text Solution

    |

  18. If y = In ((x)/(a + bx))^(x), "then " x^(3)(d^(y))/(dx^(2)) is equa...

    Text Solution

    |

  19. If (d^(2)x)/(dy^(2)) ((dy)/(dx))^(3) + (d^(2) y)/(dx^(2)) = k , then...

    Text Solution

    |

  20. If f(x) = |cos x - sin x| , " then " '((pi)/(6)) is equal to

    Text Solution

    |