Home
Class 12
MATHS
If x = tan""(y)/(2) - log[((1 + tan""(y)...

If `x = tan""(y)/(2) - log[((1 + tan""(y)/(2))^(2))/(tan""(y)/(2))], "then " dy/(dx)` is equal to

A

` (1)/(2) "" sin y (1 - sin y + cos y )`

B

`sin y (1 - sin y - cos y)`

C

`(1)/(2) "" sin y (1 + sin y + cos y)`

D

None of the above

Text Solution

Verified by Experts

The correct Answer is:
C

`x = tan(y)/(2) - [((1 + tan""(y)/(2))^(2))/("tan" (y)/(2))]` ...(i)
Put ` tan"" (y)/(2) = t rArr (y)/(2) = tan^(-1) t `
` rArr (dy)/(dx) = (2)/(1 + t^(2)) = (2) /(1 + tan^(3) ((y)/(2)) = 2 cos^(2) ((y)/(2)) = 1 + cos ` ….(ii)
From Eq . (i) , ` x = t = " In" [ ((1 + t)^(2))/(t)]`
`(dy)/(dx) = 1 - (t)/((1 + t)^(2)) ((1)/(t^(2)) + 1) = (t^(2) +1)/( t^(2) +t)`
`[ because (d)/(dt) ((1 + t)^(2))/(t) = d/dt ((1)/(t) + 2 + t) = - (1)/(t^(2)) + 1]`
` (dx)/(dt) = (1 + tan^(2)""(y)/(2))/(1 + tan^(2)"tan"(y)/(2))= (2)/(1 - cos y + siny) ` ...(iii)
On dividing Eq. (ii) by .(iii) , we get
`rArr (dy)/(dx) = ((1 + cos y) (1 - cos y + sin y))/(2)`
` dy/dx = 1/2"sin" y (1 + sin y + cos y)` .
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET CORER|35 Videos
  • DIFFERENTIATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 1 (HIGHER ORDER DERIVATIVE )|15 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos
  • FACTORIZATION FORMULAE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2|21 Videos

Similar Questions

Explore conceptually related problems

If x=y tan((x)/(2)), then (dy)/(dx)=

If y=tan^(-1)(cot((pi)/(2)-x)) then (dy)/(dx) is equal to

If y = x tan y , then (dy)/(dx) is equal to

If y=e^(2x)tan^(-1)2x,"then " dy/dx=

If log sqrt(x^(2)+y^(2))=tan^(-1)((y)/(x)),then(dy)/(dx) is

If y=e^(tan x(ln sin x)) then (dy)/(dx) is equal to

If tan^-1(x^2+y^2)=alpha,then(dy)/(dx) is equal to

y = (1 -tan^(2) (x//2))/(1 + tan^(2)(x//2)) , " find " (dy)/(dx)

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-DIFFERENTIATION -EXERCISE 2 (MISCELLANEOUS PROBLEMS)
  1. If the function f(x) is defined by f(x) = a + bx and f^(r) = fff … ...

    Text Solution

    |

  2. If f(x) = x^(3) + x^(2) * f' (1)+ xf''(2) + f''(2) + f'''(3) , AA x i...

    Text Solution

    |

  3. If x = tan""(y)/(2) - log[((1 + tan""(y)/(2))^(2))/(tan""(y)/(2))], "t...

    Text Solution

    |

  4. If y=sec^-1([sqrtx+1]/[sqrtx-1])+sin^-1([sqrtx-1]/[sqrtx+1]), then dy/...

    Text Solution

    |

  5. If y=(a^cos^((-1)x))/(1+a^cos^((-1)x)) and z=a^cos^((-1)x) , then (dy)...

    Text Solution

    |

  6. If y= log x . e ^((tan x + x ^(2))), " then" dy/(dx) is equal to

    Text Solution

    |

  7. if y=log(sinx) tanx then ((dy)/(dx)) (pi/4) is

    Text Solution

    |

  8. If y = ((ax + b)/(cx + d)), "then" 2 (dy)/(dx).(d^(3) y)/(dx^(3)) is...

    Text Solution

    |

  9. If 5f(x)+3f(1/x)=x+2 and y=x f(x), then find dy/dx at x=1.

    Text Solution

    |

  10. If y is a function of x and log(x+y)-2xy=0 then the value of y (0) is ...

    Text Solution

    |

  11. If y = f(x^(2) + 2) " and " f'(3) = 5 , " then" dy/dx " at x " = 1 is

    Text Solution

    |

  12. If y = log ((1-x^(2))/(1+x^(2))), then (dy)/(dx) is equal to

    Text Solution

    |

  13. let f(x)=e^x ,g(x)=sin^(- 1) x and h(x)=f(g(x)) then find (h^(prime)(x...

    Text Solution

    |

  14. If y = (cos x)^((cosx)^((cos x)...oo)), " then " dy/dx is equal to

    Text Solution

    |

  15. If cos(x/2) cos (x/2^2) cos (x/2^) ..... cos (x/2^n)=sinx/(sin(x/2^n) ...

    Text Solution

    |

  16. If x = log (1 + t^(2)) " and " y = t - tan^(-1)t, " then" dy/dx is e...

    Text Solution

    |

  17. If the function y(x) reprsented by x = sin t , y = ae^(tsqrt(2)) + be...

    Text Solution

    |

  18. If y=sqrt((a-x)(x-b))-(a-b)tan^(-1)(sqrt(a-x)/sqrt(x-b)) then dy/dx=

    Text Solution

    |

  19. If x=sectheta-costheta,y=sec^(10)theta-cos^(10)theta and (x^(2)+4)((dy...

    Text Solution

    |

  20. If f(x)=cot^(-1)((x^(x)-x^(-x))/(2)) then f'(1) equals

    Text Solution

    |